TY - JOUR
T1 - Mode of cembranoid action on embryonic muscle acetylcholine receptor
AU - Ulrich, H.
AU - Akk, G.
AU - Nery, A. A.
AU - Trujillo, C. A.
AU - Rodriguez, A. D.
AU - Eterović, V. A.
PY - 2008/1
Y1 - 2008/1
N2 - The mechanism of eupalmerin acetate (EUAC) actions on the embryonic muscle nicotinic acetylcholine receptor (nAChR) in BC3H-1 cells was studied by using whole-cell and single-channel patch-clamp current measurements. With whole-cell currents, EUAC did not act as an agonist on this receptor. Coapplication of 30 μM EUAC with 50 μM, 100 μM, or 500 μM carbamoylcholine (CCh) reversibly inhibited the current amplitude, whereas, with 20 μM CCh, current was increased above control values in the presence of EUAC. EUAC concentration curves (0.01-40 μM) obtained with 100 μM and 500 μM CCh displayed slope coefficients, nH, significantly smaller than one, suggesting that EUAC bound to several sites with widely differing affinities on the receptor molecule. The apparent rate of receptor desensitization in the presence of EUAC and CCh was either slower than or equal to that obtained with CCh alone. The major finding from single-channel studies was that EUAC did not affect single-channel conductance or the ability of CCh to interact with the receptor. Instead, EUAC acted by increasing the channel closing rate constant. The results are not consistent with the competitive model for EUAC inhibition, with the sequential open-channel block model, or with inhibition by increased desensitization. The data are best accounted for by a model in which EUAC acts by closed-channel block at low concentrations, by positive modulation at intermediate concentrations, and by negative allosteric modulation of the open channel at high concentrations.
AB - The mechanism of eupalmerin acetate (EUAC) actions on the embryonic muscle nicotinic acetylcholine receptor (nAChR) in BC3H-1 cells was studied by using whole-cell and single-channel patch-clamp current measurements. With whole-cell currents, EUAC did not act as an agonist on this receptor. Coapplication of 30 μM EUAC with 50 μM, 100 μM, or 500 μM carbamoylcholine (CCh) reversibly inhibited the current amplitude, whereas, with 20 μM CCh, current was increased above control values in the presence of EUAC. EUAC concentration curves (0.01-40 μM) obtained with 100 μM and 500 μM CCh displayed slope coefficients, nH, significantly smaller than one, suggesting that EUAC bound to several sites with widely differing affinities on the receptor molecule. The apparent rate of receptor desensitization in the presence of EUAC and CCh was either slower than or equal to that obtained with CCh alone. The major finding from single-channel studies was that EUAC did not affect single-channel conductance or the ability of CCh to interact with the receptor. Instead, EUAC acted by increasing the channel closing rate constant. The results are not consistent with the competitive model for EUAC inhibition, with the sequential open-channel block model, or with inhibition by increased desensitization. The data are best accounted for by a model in which EUAC acts by closed-channel block at low concentrations, by positive modulation at intermediate concentrations, and by negative allosteric modulation of the open channel at high concentrations.
KW - Allosteric inhibition
KW - Eupalmerin acetate
KW - Noncompetitive inhibitors
KW - Positive modulation
KW - Whole-cell and single-channel patch-clamp recordings
UR - http://www.scopus.com/inward/record.url?scp=38049046785&partnerID=8YFLogxK
U2 - 10.1002/jnr.21468
DO - 10.1002/jnr.21468
M3 - Article
C2 - 17868151
AN - SCOPUS:38049046785
SN - 0360-4012
VL - 86
SP - 93
EP - 107
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 1
ER -