TY - JOUR
T1 - Mmb1p binds mitochondria to dynamic microtubules
AU - Fu, Chuanhai
AU - Jain, Deeptee
AU - Costa, Judite
AU - Velve-Casquillas, Guilhem
AU - Tran, Phong T.
N1 - Funding Information:
C.F., D.J., J.C., and G.V.-C. created tools and reagents and performed experiments. C.F. and P.T.T. analyzed the data and wrote the paper. We thank F. Chang (Columbia University), F. Chiron (UCSD), A. Paoletti (Institute Curie), M. Sato (Tokyo University), T. Toda (CRUK), and M.P. Yaffe (UCSD) for kindly providing reagents. We thank L. Pon (Columbia University) and A. Paoletti (Institut Curie) for helpful discussions. We thank members of the labs of E. Bi (Penn) and P.T.T. (Penn) for helpful discussions. J.C. is supported by a PhD fellowship from the FCT through Complexite du Vivant, UPMC. This work is supported by grants from NIH, ACS, ANR, FRM, LaLigue, and HFSP.
PY - 2011/9/13
Y1 - 2011/9/13
N2 - Background: Mitochondria form a dynamic tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? Results: Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. mmb1p decreases microtubule dynamicity. Conclusions: mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p acts to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time.
AB - Background: Mitochondria form a dynamic tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? Results: Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. mmb1p decreases microtubule dynamicity. Conclusions: mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p acts to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time.
UR - http://www.scopus.com/inward/record.url?scp=80052814012&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2011.07.013
DO - 10.1016/j.cub.2011.07.013
M3 - Article
C2 - 21856157
AN - SCOPUS:80052814012
SN - 0960-9822
VL - 21
SP - 1431
EP - 1439
JO - Current Biology
JF - Current Biology
IS - 17
ER -