TY - JOUR
T1 - Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons
AU - Summers, Daniel W.
AU - DiAntonio, Aaron
AU - Milbrandt, Jeffrey
PY - 2014
Y1 - 2014
N2 - Mitochondrial dysfunction is the underlying cause ofmanyneurological disorders, including peripheral neuropathies. Mitochondria rely on a proton gradient to generate ATP and interfering with electron transport chain function can lead to the deleterious accumulation of reactive oxygen species (ROS). Notably, loss of mitochondrial potential precedes cellular demise in several programmed cell destruction pathways, including axons undergoing Wallerian degeneration. Here, we demonstrate that mitochondrial depolarization triggers axon degeneration and cell death in primary mouse sensory neurons. These degenerative events are not blocked by inhibitors of canonical programmed cell death pathways such as apoptosis, necroptosis, and parthanatos. Instead, the axodestructive factor Sarm1 is required for this axon degeneration and cell death. In the absence of Sarm1, the mitochondrial poison CCCP still induces depolarization of mitochondria, ATP depletion, calcium influx, and the accumulation of ROS, yet cell death and axon degeneration are blocked. The survival of these neurons despite the accumulation ofROSindicates that Sarm1 acts downstream ofROSgeneration. Indeed, loss of Sarm1 protects sensory neurons and their axons from prolonged exposure to ROS. Therefore, Sarm1 functions downstream of ROS to induce neuronal cell death and axon degeneration during oxidative stress. These findings highlight the central role for Sarm1 in a novel form of programmed cell destruction that we term sarmoptosis.
AB - Mitochondrial dysfunction is the underlying cause ofmanyneurological disorders, including peripheral neuropathies. Mitochondria rely on a proton gradient to generate ATP and interfering with electron transport chain function can lead to the deleterious accumulation of reactive oxygen species (ROS). Notably, loss of mitochondrial potential precedes cellular demise in several programmed cell destruction pathways, including axons undergoing Wallerian degeneration. Here, we demonstrate that mitochondrial depolarization triggers axon degeneration and cell death in primary mouse sensory neurons. These degenerative events are not blocked by inhibitors of canonical programmed cell death pathways such as apoptosis, necroptosis, and parthanatos. Instead, the axodestructive factor Sarm1 is required for this axon degeneration and cell death. In the absence of Sarm1, the mitochondrial poison CCCP still induces depolarization of mitochondria, ATP depletion, calcium influx, and the accumulation of ROS, yet cell death and axon degeneration are blocked. The survival of these neurons despite the accumulation ofROSindicates that Sarm1 acts downstream ofROSgeneration. Indeed, loss of Sarm1 protects sensory neurons and their axons from prolonged exposure to ROS. Therefore, Sarm1 functions downstream of ROS to induce neuronal cell death and axon degeneration during oxidative stress. These findings highlight the central role for Sarm1 in a novel form of programmed cell destruction that we term sarmoptosis.
KW - Axon
KW - Cell death
KW - Degeneration
KW - Mitochondria
KW - Reactive oxygen species
KW - Sarm1
UR - http://www.scopus.com/inward/record.url?scp=84903954827&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0877-14.2014
DO - 10.1523/JNEUROSCI.0877-14.2014
M3 - Article
C2 - 25009267
AN - SCOPUS:84903954827
SN - 0270-6474
VL - 34
SP - 9338
EP - 9350
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 28
ER -