TY - JOUR
T1 - MiRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis
AU - Creasey, Kate M.
AU - Zhai, Jixian
AU - Borges, Filipe
AU - Van Ex, Frederic
AU - Regulski, Michael
AU - Meyers, Blake C.
AU - Martienssen, Robert A.
N1 - Funding Information:
Acknowledgements We thank V. Colot, O. Voinnet and A. Sarazin for sharing unpublished data and for discussions, J. Simorowski for plant genetics and J. Kendall for computational advice. We thank R.K. Slotkin for sharing data before publication. K.M.C. and M.R. were supported, in part, by a research collaboration with DuPont Pioneer. F.V.E. was supported by a fellowship from the Belgian American Educational Foundation. J.Z. was supported by a University of Delaware Graduate fellowship. Research in the Martienssen laboratory is supported by a grant from the National Institutes of Health (RO1GM067014 to R.A.M.) and by the Howard Hughes Medical Institute and Gordon and Betty Moore Foundation (GBMF3033). The authors acknowledge that this work was performed with assistance from the Cold Spring Harbor Laboratory Shared Resources, which are funded, in part, by the Cancer Center Support Grant (5PP30CA045508).
PY - 2014
Y1 - 2014
N2 - In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide epigenetically activated'small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.
AB - In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide epigenetically activated'small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.
UR - http://www.scopus.com/inward/record.url?scp=84897127295&partnerID=8YFLogxK
U2 - 10.1038/nature13069
DO - 10.1038/nature13069
M3 - Article
C2 - 24670663
AN - SCOPUS:84897127295
SN - 0028-0836
VL - 508
SP - 411
EP - 415
JO - Nature
JF - Nature
IS - 7496
ER -