Abstract
In atomically thin two-dimensional semiconductors such as transition metal dichalcogenides (TMDs), controlling the density and type of defects promises to be an effective approach for engineering light-matter interactions. We demonstrate that electron-beam irradiation is a simple tool for selectively introducing defect-bound exciton states associated with chalcogen vacancies in TMDs. Our first-principles calculations and time-resolved spectroscopy measurements of monolayer WSe2 reveal that these defect-bound excitons exhibit exceptional optical properties including a recombination lifetime approaching 200 ns and a valley lifetime longer than 1 μs. The ability to engineer the crystal lattice through electron irradiation provides a new approach for tailoring the optical response of TMDs for photonics, quantum optics, and valleytronics applications.
Original language | English |
---|---|
Article number | 057403 |
Journal | Physical Review Letters |
Volume | 121 |
Issue number | 5 |
DOIs | |
State | Published - Aug 2 2018 |