TY - JOUR
T1 - MicroRNA-15a/16 regulates apoptosis of lung epithelial cells after oxidative stress
AU - Cao, Yong
AU - Zhang, Duo
AU - Moon, Hyung Geun
AU - Lee, Heedoo
AU - Haspel, Jeffrey A.
AU - Hu, Kebin
AU - Xie, Lixin
AU - Jin, Yang
N1 - Publisher Copyright:
© 2016, Uninversity of Michigan. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Lung epithelial cell apoptosis is an important feature of hyperoxia-induced lung injury. The death receptor–associated extrinsic pathway and mitochondria-associated intrinsic pathway both mediate the development of lung epithelial cell apoptosis. Despite decades of research, molecular mechanisms of hyperoxia-induced epithelial cell apoptosis remain incompletely understood. Here, we report a novel regulatory paradigm in response to hyperoxia-associated oxidative stress. Hyperoxia markedly upregulated microRNA (miR)-15a/16 levels in lung epithelial cells, bronchoalveolar lavage fluid (BALF) and lung tissue. This effect was mediated by hyperoxia-induced reactive oxygen species. Functionally, miR-15a/16 inhibitors induced caspase-3–mediated lung epithelial cell apoptosis, in the presence of hyperoxia. MiR-15a/16 inhibitors robustly enhanced FADD level and downregulated Bcl-2 expression. Consistently, cleaved caspase-8 and -9 were highly induced in the miR-15a/16–deficient cells, after hyperoxia. Using airway epithelial cell–specific, miR-15a/16–/– mice, we found that Bcl-2 was significantly reduced in lung epithelial cells in vivo after hyperoxia. In contrast, caspase-3, caspase-8 and Bcl-2–associated death promoter (BAD) were highly elevated in the miR-15a/16–/– epithelial cells in vivo. Interestingly, in lung epithelial malignant cells, rather than benign cells, deletion of miR-15a/16 prevented apoptosis. Furthermore, deletion of miR-15a/16 in macrophages also prohibited apoptosis, which is the opposite of what we have found in normal lung epithelial cells. Taken together, our data suggested that miR-15a/16 may exert differential roles in different cell types. MiR-15a/16 deficiency results in lung epithelial cell apoptosis in response to hyperoxia, via modulating both intrinsic and extrinsic apoptosis pathways.
AB - Lung epithelial cell apoptosis is an important feature of hyperoxia-induced lung injury. The death receptor–associated extrinsic pathway and mitochondria-associated intrinsic pathway both mediate the development of lung epithelial cell apoptosis. Despite decades of research, molecular mechanisms of hyperoxia-induced epithelial cell apoptosis remain incompletely understood. Here, we report a novel regulatory paradigm in response to hyperoxia-associated oxidative stress. Hyperoxia markedly upregulated microRNA (miR)-15a/16 levels in lung epithelial cells, bronchoalveolar lavage fluid (BALF) and lung tissue. This effect was mediated by hyperoxia-induced reactive oxygen species. Functionally, miR-15a/16 inhibitors induced caspase-3–mediated lung epithelial cell apoptosis, in the presence of hyperoxia. MiR-15a/16 inhibitors robustly enhanced FADD level and downregulated Bcl-2 expression. Consistently, cleaved caspase-8 and -9 were highly induced in the miR-15a/16–deficient cells, after hyperoxia. Using airway epithelial cell–specific, miR-15a/16–/– mice, we found that Bcl-2 was significantly reduced in lung epithelial cells in vivo after hyperoxia. In contrast, caspase-3, caspase-8 and Bcl-2–associated death promoter (BAD) were highly elevated in the miR-15a/16–/– epithelial cells in vivo. Interestingly, in lung epithelial malignant cells, rather than benign cells, deletion of miR-15a/16 prevented apoptosis. Furthermore, deletion of miR-15a/16 in macrophages also prohibited apoptosis, which is the opposite of what we have found in normal lung epithelial cells. Taken together, our data suggested that miR-15a/16 may exert differential roles in different cell types. MiR-15a/16 deficiency results in lung epithelial cell apoptosis in response to hyperoxia, via modulating both intrinsic and extrinsic apoptosis pathways.
UR - http://www.scopus.com/inward/record.url?scp=84987651026&partnerID=8YFLogxK
U2 - 10.2119/molmed.2015.00136
DO - 10.2119/molmed.2015.00136
M3 - Article
C2 - 27257854
AN - SCOPUS:84987651026
SN - 1076-1551
VL - 22
SP - 233
EP - 243
JO - Molecular Medicine
JF - Molecular Medicine
ER -