TY - JOUR
T1 - Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons
AU - Hu, Hui Juan
AU - Alter, Benedict J.
AU - Carrasquillo, Yarimar
AU - Qiu, Chang Sheng
AU - Gereau IV, Robert W.
PY - 2007/11/28
Y1 - 2007/11/28
N2 - Metabotropic glutamate receptors (mGluRs) play important roles in the modulation of nociception. The group I mGluRs (mGlu1 and mGlu5) modulate nociceptive plasticity via activation of extracellular signal-regulated kinase (ERK) signaling. We reported recently that the K+ channel Kv4.2 subunit underlies A-type K+ currents in the spinal cord dorsal horn and is modulated by the ERK signaling pathway. Kv4.2-mediated A-type currents are important determinants of dorsal horn neuronal excitability and central sensitization that underlies hypersensitivity after tissue injury. In the present study, we demonstrate that ERK-mediated phosphorylation of Kv4.2 is downstream of mGlu5 activation in spinal cord dorsal horn neurons. Activation of group I mGluRs inhibited Kv4.2-mediated A-type K+ currents and increased neuronal excitability in dorsal horn neurons. These effects were mediated by activation of mGlu5, but not mGlu1, and were dependent on ERK activation. Analysis of Kv4.2 phosphorylation site mutants clearly identified S616 as the residue responsible for mGlu5-ERK-dependent modulation of A-type currents and excitability. Furthermore, nociceptive behavior induced by activation of spinal group I mGluRs was impaired in Kv4.2 knock-out mice, demonstrating that, in vivo, modulation of Kv4.2 is downstream of mGlu5 activation. Altogether, our results indicate that activation of mGlu5 leads to ERK-mediated phosphorylation and modulation of Kv4.2-containing potassium channels in dorsal horn neurons. This modulation may contribute to nociceptive plasticity and central sensitization associated with chronic inflammatory pain conditions.
AB - Metabotropic glutamate receptors (mGluRs) play important roles in the modulation of nociception. The group I mGluRs (mGlu1 and mGlu5) modulate nociceptive plasticity via activation of extracellular signal-regulated kinase (ERK) signaling. We reported recently that the K+ channel Kv4.2 subunit underlies A-type K+ currents in the spinal cord dorsal horn and is modulated by the ERK signaling pathway. Kv4.2-mediated A-type currents are important determinants of dorsal horn neuronal excitability and central sensitization that underlies hypersensitivity after tissue injury. In the present study, we demonstrate that ERK-mediated phosphorylation of Kv4.2 is downstream of mGlu5 activation in spinal cord dorsal horn neurons. Activation of group I mGluRs inhibited Kv4.2-mediated A-type K+ currents and increased neuronal excitability in dorsal horn neurons. These effects were mediated by activation of mGlu5, but not mGlu1, and were dependent on ERK activation. Analysis of Kv4.2 phosphorylation site mutants clearly identified S616 as the residue responsible for mGlu5-ERK-dependent modulation of A-type currents and excitability. Furthermore, nociceptive behavior induced by activation of spinal group I mGluRs was impaired in Kv4.2 knock-out mice, demonstrating that, in vivo, modulation of Kv4.2 is downstream of mGlu5 activation. Altogether, our results indicate that activation of mGlu5 leads to ERK-mediated phosphorylation and modulation of Kv4.2-containing potassium channels in dorsal horn neurons. This modulation may contribute to nociceptive plasticity and central sensitization associated with chronic inflammatory pain conditions.
KW - ERK
KW - Excitability
KW - Kv4.2
KW - Nociception
KW - Pain
KW - Plasticity
KW - Spinal cord
UR - http://www.scopus.com/inward/record.url?scp=36849083576&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0269-07.2007
DO - 10.1523/JNEUROSCI.0269-07.2007
M3 - Article
C2 - 18045912
AN - SCOPUS:36849083576
SN - 0270-6474
VL - 27
SP - 13181
EP - 13191
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 48
ER -