TY - JOUR
T1 - Metabolic fate of radiolabeled palmitate in ischemic canine myocardium
T2 - Implications for positron emission tomography
AU - Rosamond, T. L.
AU - Abendschein, D. R.
AU - Sobel, B. E.
AU - Bergmann, S. R.
AU - Fox, K. A.A.
PY - 1987
Y1 - 1987
N2 - Interpretation of dynamic and integrated myocardial tomograms requires elucidation of the biochemical fate of the tracer and characterization of its tissue distribution and rate of efflux. The fate of [1-11C] and [1-14C] palmitate was studied in 13 open-chest dogs during control or ischemic extracorporeal perfusion of the left circumflex coronary artery. Residue detection of myocardial radioactivity, and radio-biochemical analyses of sequential transmural biopsies and arterial and coronary venous effluent were performed for 30 min after intracoronary bolus administration of tracer. In control hearts, 10.3% of initially extracted tracer was retained in tissue (2.9% in triglyceride, 3.5% in phospholipid, and 3.9% in other lipind and aqueous fractions), 73% was oxidized, and 16.1% back-diffused unaltered. With ischemia (pump flow 10% of normal), 28.1% was retained (18% in triglyceride, 6.0% in phospholipid, and 4.1% in other lipid and aqueous fractions), 27.2% was oxidized, and 44.4% back diffused (p<0.05 compared to control). Throughout the 30-min study interval, triglyceride, diglyceride, and nonesterified fatty acid comprised a significantly greater fraction of initially extracted radioactivity in ischemic than in control hearts. Thus, during ischemia externally detected clearance rates cannot be used as a direct measure of fatty acid metabolism because of marked influences on efflux of nonmetabolized radiolabeled palmitate and the distribution of tracer retained in tissue. Quantitative measurements of specific metabolic processes by tomography will require development and validation of tracers confined to individual metabolic pathways or pools.
AB - Interpretation of dynamic and integrated myocardial tomograms requires elucidation of the biochemical fate of the tracer and characterization of its tissue distribution and rate of efflux. The fate of [1-11C] and [1-14C] palmitate was studied in 13 open-chest dogs during control or ischemic extracorporeal perfusion of the left circumflex coronary artery. Residue detection of myocardial radioactivity, and radio-biochemical analyses of sequential transmural biopsies and arterial and coronary venous effluent were performed for 30 min after intracoronary bolus administration of tracer. In control hearts, 10.3% of initially extracted tracer was retained in tissue (2.9% in triglyceride, 3.5% in phospholipid, and 3.9% in other lipind and aqueous fractions), 73% was oxidized, and 16.1% back-diffused unaltered. With ischemia (pump flow 10% of normal), 28.1% was retained (18% in triglyceride, 6.0% in phospholipid, and 4.1% in other lipid and aqueous fractions), 27.2% was oxidized, and 44.4% back diffused (p<0.05 compared to control). Throughout the 30-min study interval, triglyceride, diglyceride, and nonesterified fatty acid comprised a significantly greater fraction of initially extracted radioactivity in ischemic than in control hearts. Thus, during ischemia externally detected clearance rates cannot be used as a direct measure of fatty acid metabolism because of marked influences on efflux of nonmetabolized radiolabeled palmitate and the distribution of tracer retained in tissue. Quantitative measurements of specific metabolic processes by tomography will require development and validation of tracers confined to individual metabolic pathways or pools.
UR - http://www.scopus.com/inward/record.url?scp=0023619396&partnerID=8YFLogxK
M3 - Article
C2 - 3497240
AN - SCOPUS:0023619396
SN - 0161-5505
VL - 28
SP - 1322
EP - 1329
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 8
ER -