TY - JOUR
T1 - Melanoma differentiation-associated gene 5 is critical for protection against theiler's virus-induced demyelinating disease
AU - Jin, Young Hee
AU - Kim, Seung Jae
AU - So, Eui Young
AU - Meng, Liping
AU - Colonna, Marco
AU - Kim, Byung S.
PY - 2012/2
Y1 - 2012/2
N2 - Infection of dendritic and glial cells with Theiler's murine encephalomyelitis virus (TMEV) induces various cytokines via Tolllike receptor- and melanoma differentiation-associated gene 5 (MDA5)-dependent pathways. However, the involvement and role of MDA5 in cytokine gene activation and the pathogenesis of TMEV-induced demyelinating disease are largely unknown. In this study, we demonstrate that MDA5 plays a critical role in the production of TMEV-induced alpha interferon (IFN-α) during early viral infection and in protection against the development of virus-induced demyelinating disease. Our results indicate that MDA5-deficient 129SvJ mice display significantly higher viral loads and apparent demyelinating lesions in the central nerve system (CNS) accompanied by clinical symptoms compared with wild-type 129SvJ mice. During acute viral infection, MDA5-deficient mice produced elevated levels of chemokines, consistent with increased cellular infiltration, but reduced levels of IFN-α, known to control T cell responses and cellular infiltration. Additional studies with isolated CNS glial cells from these mice suggest that cells from MDA5-deficient mice are severely compromised in the production of IFN-α upon viral infection, which results in increased cellular infiltration and viral loads in the CNS. Despite inadequate stimulation, the overall T cell responses to the viral determinants were significantly elevated in MDA5-deficient mice, reflecting the increased cellular infiltration. Therefore, the lack of MDA5-mediated IFN-α production may facilitate a massive viral load and elevated cellular infiltration in the CNS during early viral infection, leading to the pathogenesis of demyelinating disease.
AB - Infection of dendritic and glial cells with Theiler's murine encephalomyelitis virus (TMEV) induces various cytokines via Tolllike receptor- and melanoma differentiation-associated gene 5 (MDA5)-dependent pathways. However, the involvement and role of MDA5 in cytokine gene activation and the pathogenesis of TMEV-induced demyelinating disease are largely unknown. In this study, we demonstrate that MDA5 plays a critical role in the production of TMEV-induced alpha interferon (IFN-α) during early viral infection and in protection against the development of virus-induced demyelinating disease. Our results indicate that MDA5-deficient 129SvJ mice display significantly higher viral loads and apparent demyelinating lesions in the central nerve system (CNS) accompanied by clinical symptoms compared with wild-type 129SvJ mice. During acute viral infection, MDA5-deficient mice produced elevated levels of chemokines, consistent with increased cellular infiltration, but reduced levels of IFN-α, known to control T cell responses and cellular infiltration. Additional studies with isolated CNS glial cells from these mice suggest that cells from MDA5-deficient mice are severely compromised in the production of IFN-α upon viral infection, which results in increased cellular infiltration and viral loads in the CNS. Despite inadequate stimulation, the overall T cell responses to the viral determinants were significantly elevated in MDA5-deficient mice, reflecting the increased cellular infiltration. Therefore, the lack of MDA5-mediated IFN-α production may facilitate a massive viral load and elevated cellular infiltration in the CNS during early viral infection, leading to the pathogenesis of demyelinating disease.
UR - http://www.scopus.com/inward/record.url?scp=84863172614&partnerID=8YFLogxK
U2 - 10.1128/JVI.06457-11
DO - 10.1128/JVI.06457-11
M3 - Article
C2 - 22090123
AN - SCOPUS:84863172614
SN - 0022-538X
VL - 86
SP - 1531
EP - 1543
JO - Journal of virology
JF - Journal of virology
IS - 3
ER -