Abstract

The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-ofthe- box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts.

Original languageEnglish
Pages (from-to)2083-2085
Number of pages3
JournalJournal of cell science
Volume130
Issue number13
DOIs
StatePublished - Jul 1 2017

Fingerprint

Dive into the research topics of 'Meeting report - Intercellular interactions in context: Towards a mechanistic understanding of cells in organs'. Together they form a unique fingerprint.

Cite this