Autophagy is a highly evolutionarily conserved process in the eukaryotic cellular system by which dysfunctional organelles are selectively degraded through a series of processes of lysosomal activity and then returned to the cytoplasm for reuse. All cells require this process to maintain cellular homeostasis and promote cell survival during stress responses such as deprivation and hypoxia. Osteoblasts and osteoclasts are two cellular phenotypes in the bone that mediate bone homeostasis. However, an imbalance between osteoblastic bone formation and osteoclastic bone resorption contributes to the onset of bone diseases. Recent studies suggest that autophagy, mitophagy, and selective mitochondrial autophagy may play an essential role in regulating osteoblast differentiation and osteoclast maturation. Autophagic activity dysregulation alters the equilibrium between osteoblastic bone creation and osteoclastic bone resorption, allowing bone disorders like osteoporosis to develop more easily. The current review emphasizes the role of autophagy and mitophagy and their related molecular mechanisms in bone metabolic disorders. In the current review, we emphasize the role of autophagy and mitophagy as well as their related molecular mechanism in bone metabolic disorders. Furthermore, we will discuss autophagy as a target for the treatment of metabolic bone disease and future application in therapeutic translational research.

Original languageEnglish
Article number120595
JournalLife Sciences
StatePublished - Jul 15 2022


  • Autophagy
  • Epigenetics
  • Mitophagy
  • Osteoporosis
  • miRNA regulation


Dive into the research topics of 'Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics'. Together they form a unique fingerprint.

Cite this