TY - JOUR
T1 - Mechanism of okadaic acid-induced neuronal death and the effect of estrogens
AU - Yi, Kun Don
AU - Covey, Douglas F.
AU - Simpkins, James W.
PY - 2009/2
Y1 - 2009/2
N2 - Serine/threonine protein phosphatases are important mediators of general cellular function as well as neurodegenerative processes. We have previously shown inhibition of protein phosphatases to be as neurotoxic as glutamate-induced neuronal death but resistant to neuroprotection by estrogens. In this study, the mechanism by which phosphatase inhibition via okadaic acid (OA) induced neurotoxicity is explored. Neurons were exposed to OA or glutamate in the presence or absence of various protein kinases inhibitors, and/or one of four estrogens. Both OA and glutamate induced cell death via increased reactive oxygen species, protein carbonylation, lipid peroxidation, caspase-3 activity, and mitochondrial dysfunction. All estrogens attenuated glutamate-mediated responses, but not OA-induced responses. In addition, inhibition of protein kinase C and mitogen-activated protein kinase pathway was neuroprotective against glutamate but not OA toxicity. Interestingly, inhibition of mitogen-activated protein kinase pathway with PD98096 or U0126 caused a decrease in reactive oxygen species production suggesting that activation of ERK1/2 could further exacerbate the oxidative stress caused by glutamate-induced toxicity; however, these inhibitors had no effect on OA-induced toxicity. Collectively, these results indicate that both glutamate and OA neurotoxicities are mediated by persistent activation of ERK1/2 and/or protein kinase C and a resulting oxidative stress, and that protein phosphatase activity is an important and necessary aspect of estrogen-mediated neuroprotection.
AB - Serine/threonine protein phosphatases are important mediators of general cellular function as well as neurodegenerative processes. We have previously shown inhibition of protein phosphatases to be as neurotoxic as glutamate-induced neuronal death but resistant to neuroprotection by estrogens. In this study, the mechanism by which phosphatase inhibition via okadaic acid (OA) induced neurotoxicity is explored. Neurons were exposed to OA or glutamate in the presence or absence of various protein kinases inhibitors, and/or one of four estrogens. Both OA and glutamate induced cell death via increased reactive oxygen species, protein carbonylation, lipid peroxidation, caspase-3 activity, and mitochondrial dysfunction. All estrogens attenuated glutamate-mediated responses, but not OA-induced responses. In addition, inhibition of protein kinase C and mitogen-activated protein kinase pathway was neuroprotective against glutamate but not OA toxicity. Interestingly, inhibition of mitogen-activated protein kinase pathway with PD98096 or U0126 caused a decrease in reactive oxygen species production suggesting that activation of ERK1/2 could further exacerbate the oxidative stress caused by glutamate-induced toxicity; however, these inhibitors had no effect on OA-induced toxicity. Collectively, these results indicate that both glutamate and OA neurotoxicities are mediated by persistent activation of ERK1/2 and/or protein kinase C and a resulting oxidative stress, and that protein phosphatase activity is an important and necessary aspect of estrogen-mediated neuroprotection.
KW - Estradiol
KW - Estrogen analogues
KW - Okadaic acid
KW - Oxidative stress
KW - Phosphatases
KW - Protein kinases
UR - http://www.scopus.com/inward/record.url?scp=58149328523&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2008.05805.x
DO - 10.1111/j.1471-4159.2008.05805.x
M3 - Article
C2 - 19054278
AN - SCOPUS:58149328523
SN - 0022-3042
VL - 108
SP - 732
EP - 740
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 3
ER -