TY - JOUR
T1 - Mechanism by Which a Sustained Inflation Can Worsen Oxygenation in Acute Lung Injury
AU - Musch, Guido
AU - Harris, R. Scott
AU - Vidal Melo, Marcos F.
AU - O'Neill, Kevin R.
AU - Layfield, J. Dominick H.
AU - Winkler, Tilo
AU - Venegas, Jose G.
PY - 2004/2
Y1 - 2004/2
N2 - Background: Sustained lung inflations (recruitment maneuvers [RMs]) are occasionally used during mechanical ventilation of patients with acute lung injury to restore aeration to atelectatic alveoli. However, RMs do not improve, and may even worsen, gas exchange in a fraction of these patients. In this study, the authors sought to determine the mechanism by which an RM can impair gas exchange in acute lung injury. Methods: The authors selected a model of acute lung injury that was unlikely to exhibit sustained recruitment in response to a lung inflation. In five sheep, lung injury was induced by lavage with 0.2% polysorbate 80 in saline. Positron emission tomography and [ 13N]nitrogen were used to assess regional lung function in dependent, middle, and nondependent lung regions. Physiologic data and positron emission scans were collected before and 5 min after a sustained inflation (continuous positive airway pressure of 50 cm H2O for 30 s). Results: All animals showed greater loss of aeration and higher perfusion and shunting blood flow in the dependent region. After the RM, Pao2 decreased in all animals by 35 ± 22 mmHg (P < 0.05). This decrease in Pao2 was associated with redistribution of pulmonary blood flow from the middle, more aerated region to the dependent, less aerated region (P < 0.05) and with an increase in the fraction of pulmonary blood flow that was shunted in the dependent region (P < 0.05). Neither respiratory compliance nor aeration of the dependent region improved after the RM. Conclusions: When a sustained inflation does not restore aeration to atelectatic regions, it can worsen oxygenation by increasing the fraction of pulmonary blood flow that is shunted in nonaerated regions.
AB - Background: Sustained lung inflations (recruitment maneuvers [RMs]) are occasionally used during mechanical ventilation of patients with acute lung injury to restore aeration to atelectatic alveoli. However, RMs do not improve, and may even worsen, gas exchange in a fraction of these patients. In this study, the authors sought to determine the mechanism by which an RM can impair gas exchange in acute lung injury. Methods: The authors selected a model of acute lung injury that was unlikely to exhibit sustained recruitment in response to a lung inflation. In five sheep, lung injury was induced by lavage with 0.2% polysorbate 80 in saline. Positron emission tomography and [ 13N]nitrogen were used to assess regional lung function in dependent, middle, and nondependent lung regions. Physiologic data and positron emission scans were collected before and 5 min after a sustained inflation (continuous positive airway pressure of 50 cm H2O for 30 s). Results: All animals showed greater loss of aeration and higher perfusion and shunting blood flow in the dependent region. After the RM, Pao2 decreased in all animals by 35 ± 22 mmHg (P < 0.05). This decrease in Pao2 was associated with redistribution of pulmonary blood flow from the middle, more aerated region to the dependent, less aerated region (P < 0.05) and with an increase in the fraction of pulmonary blood flow that was shunted in the dependent region (P < 0.05). Neither respiratory compliance nor aeration of the dependent region improved after the RM. Conclusions: When a sustained inflation does not restore aeration to atelectatic regions, it can worsen oxygenation by increasing the fraction of pulmonary blood flow that is shunted in nonaerated regions.
UR - http://www.scopus.com/inward/record.url?scp=1642458302&partnerID=8YFLogxK
U2 - 10.1097/00000542-200402000-00022
DO - 10.1097/00000542-200402000-00022
M3 - Article
C2 - 14739807
AN - SCOPUS:1642458302
VL - 100
SP - 323
EP - 330
JO - Anesthesiology
JF - Anesthesiology
SN - 0003-3022
IS - 2
ER -