TY - JOUR
T1 - Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride
AU - Guilak, F.
AU - Zell, R. A.
AU - Erickson, G. R.
AU - Grande, D. A.
AU - Rubin, C. T.
AU - McLeod, K. J.
AU - Donahue, H. J.
PY - 1999
Y1 - 1999
N2 - Chondrocytes in articular cartilage utilize mechanical signals from their environment to regulate their metabolic activity. However, the sequence of events involved in the transduction of mechanical signals to a biochemical signal is not fully understood. It has been proposed that an increase in the concentration of intracellular calcium ion ([Ca2+]i) is one of the earliest events in the process of cellular mechanical signal transduction. With use of fluorescent confocal microscopy, [Ca2+]i was monitored in isolated articular chondrocytes subjected to controlled deformation with the edge of a glass micropipette. Mechanical stimulation resulted in an immediate and transient increase in [Ca2+]i. The initiation of Ca2+ waves was abolished by removing Ca2+ from the extracellular media and was significantly inhibited by the presence of gadolinium ion (10 μM) or amiloride (1 mM), which have previously been reported to block mechanosensitive ion channels. Inhibitors of intracellular Ca2+ release (dantrolene and 8-diethylaminooctyl 3,4,5-trimethoxybenzoate hydrochloride) or cytoskeletal disrupting agents (cytochalasin D and colchicine) had no significant effect on the characteristics of the Ca2+ waves. These findings suggest that a possible mechanism of Ca2+ mobilization in this case is a self-reinforcing influx of Ca2+ from the extracellular media, initiated by a Ca2+-permeable mechanosensitive ion channel. Our results indicate that a transient increase in intracellular Ca2+ concentration may be one of the earliest events involved in the response of chondrocytes to mechanical stress and support the hypothesis that deformation-induced Ca2+ waves are initiated through mechanosensitive ion channels.
AB - Chondrocytes in articular cartilage utilize mechanical signals from their environment to regulate their metabolic activity. However, the sequence of events involved in the transduction of mechanical signals to a biochemical signal is not fully understood. It has been proposed that an increase in the concentration of intracellular calcium ion ([Ca2+]i) is one of the earliest events in the process of cellular mechanical signal transduction. With use of fluorescent confocal microscopy, [Ca2+]i was monitored in isolated articular chondrocytes subjected to controlled deformation with the edge of a glass micropipette. Mechanical stimulation resulted in an immediate and transient increase in [Ca2+]i. The initiation of Ca2+ waves was abolished by removing Ca2+ from the extracellular media and was significantly inhibited by the presence of gadolinium ion (10 μM) or amiloride (1 mM), which have previously been reported to block mechanosensitive ion channels. Inhibitors of intracellular Ca2+ release (dantrolene and 8-diethylaminooctyl 3,4,5-trimethoxybenzoate hydrochloride) or cytoskeletal disrupting agents (cytochalasin D and colchicine) had no significant effect on the characteristics of the Ca2+ waves. These findings suggest that a possible mechanism of Ca2+ mobilization in this case is a self-reinforcing influx of Ca2+ from the extracellular media, initiated by a Ca2+-permeable mechanosensitive ion channel. Our results indicate that a transient increase in intracellular Ca2+ concentration may be one of the earliest events involved in the response of chondrocytes to mechanical stress and support the hypothesis that deformation-induced Ca2+ waves are initiated through mechanosensitive ion channels.
UR - http://www.scopus.com/inward/record.url?scp=0032990139&partnerID=8YFLogxK
U2 - 10.1002/jor.1100170319
DO - 10.1002/jor.1100170319
M3 - Article
C2 - 10376733
AN - SCOPUS:0032990139
SN - 0736-0266
VL - 17
SP - 421
EP - 429
JO - Journal of Orthopaedic Research
JF - Journal of Orthopaedic Research
IS - 3
ER -