TY - JOUR
T1 - Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes
T2 - Mboat7 reduction and hepatic steatosis
AU - Meroni, Marica
AU - Dongiovanni, Paola
AU - Longo, Miriam
AU - Carli, Fabrizia
AU - Baselli, Guido
AU - Rametta, Raffaela
AU - Pelusi, Serena
AU - Badiali, Sara
AU - Maggioni, Marco
AU - Gaggini, Melania
AU - Fracanzani, Anna Ludovica
AU - Romeo, Stefano
AU - Gatti, Stefano
AU - Davidson, Nicholas O.
AU - Gastaldelli, Amalia
AU - Valenti, Luca
N1 - Publisher Copyright:
© 2020 The Author(s)
PY - 2020/2
Y1 - 2020/2
N2 - Background: Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation. Methods: Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes. Findings: In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammation and MBOAT7 genotype. Hepatic MBOAT7 levels were reduced in murine models of fatty liver, and by hyper-insulinemia. In wild-type mice, Mboat7 was down-regulated by refeeding and insulin, concomitantly with insulin signalling activation. Acute hepatic Mboat7 silencing promoted hepatic steatosis in vivo and enhanced expression of fatty acid transporter Fatp1. MBOAT7 deletion in hepatocytes reduced the incorporation of arachidonic acid into phosphatidylinositol, consistently with decreased enzymatic activity, determining the accumulation of saturated triglycerides, enhanced lipogenesis and FATP1 expression, while FATP1 deletion rescued the phenotype. Interpretation: MBOAT7 down-regulation by hyper-insulinemia contributes to hepatic fat accumulation, impairing phosphatidylinositol remodelling and up-regulating FATP1. Funding: LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016–02,364,358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; LV and AG received funding from the European Union Programme Horizon 2020 (No. 777,377) for the project LITMUS-“Liver Investigation: Testing Marker Utility in Steatohepatitis”. MM was supported by Fondazione Italiana per lo Studio del Fegato (AISF) ‘Mario Coppo’ fellowship.
AB - Background: Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation. Methods: Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes. Findings: In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammation and MBOAT7 genotype. Hepatic MBOAT7 levels were reduced in murine models of fatty liver, and by hyper-insulinemia. In wild-type mice, Mboat7 was down-regulated by refeeding and insulin, concomitantly with insulin signalling activation. Acute hepatic Mboat7 silencing promoted hepatic steatosis in vivo and enhanced expression of fatty acid transporter Fatp1. MBOAT7 deletion in hepatocytes reduced the incorporation of arachidonic acid into phosphatidylinositol, consistently with decreased enzymatic activity, determining the accumulation of saturated triglycerides, enhanced lipogenesis and FATP1 expression, while FATP1 deletion rescued the phenotype. Interpretation: MBOAT7 down-regulation by hyper-insulinemia contributes to hepatic fat accumulation, impairing phosphatidylinositol remodelling and up-regulating FATP1. Funding: LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016–02,364,358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; LV and AG received funding from the European Union Programme Horizon 2020 (No. 777,377) for the project LITMUS-“Liver Investigation: Testing Marker Utility in Steatohepatitis”. MM was supported by Fondazione Italiana per lo Studio del Fegato (AISF) ‘Mario Coppo’ fellowship.
KW - LPIAT1
KW - NAFLD
KW - Nash
KW - Nonalcoholic fatty liver disease
KW - Phosphatidylinositol
KW - Phospholipid
KW - Steatohepatitis
UR - http://www.scopus.com/inward/record.url?scp=85079396588&partnerID=8YFLogxK
U2 - 10.1016/j.ebiom.2020.102658
DO - 10.1016/j.ebiom.2020.102658
M3 - Article
C2 - 32058943
AN - SCOPUS:85079396588
SN - 2352-3964
VL - 52
JO - EBioMedicine
JF - EBioMedicine
M1 - 102658
ER -