Abstract

Objective: Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer’s disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. Methods: Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid-beta (Aβ) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. Results: Individuals with AD had high CSF pT217/T217 and low Aβ42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aβ 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aβ 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aβ 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aβ 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. Interpretation: MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.

Original languageEnglish
Pages (from-to)1817-1830
Number of pages14
JournalAnnals of Clinical and Translational Neurology
Volume8
Issue number9
DOIs
StatePublished - Sep 2021

Keywords

  • Alzheimer's Disease
  • Tauopathies
  • biomarker
  • cerebrospinal fluid
  • mass spectrometry
  • tau phosphorylation

Fingerprint

Dive into the research topics of 'MAPT R406W increases tau T217 phosphorylation in absence of amyloid pathology'. Together they form a unique fingerprint.

Cite this