Abstract

INTRODUCTION: Memory-associated neural circuits produce oscillatory events including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep electroencephalography (EEG). Changes in the “coupling” of these events may indicate early Alzheimer's disease (AD) pathogenesis. METHODS: We analyzed 205 aging adults using single-channel sleep EEG, cerebrospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale. We mapped SW-TB and SW-SP neural circuit coupling precision to amyloid positivity, cognitive impairment, and CSF AD biomarkers. RESULTS: Cognitive impairment correlated with lower TB spectral power in SW-TB coupling. Cognitively unimpaired, amyloid positive individuals demonstrated lower precision in SW-TB and SW-SP coupling compared to amyloid negative individuals. Significant biomarker correlations were found in oscillatory event coupling with CSF Aβ42/Aβ40, phosphorylated- tau181, and total-tau. DISCUSSION: Sleep-dependent memory processing integrity in neural circuits can be measured for both SW-TB and SW-SP coupling. This breakdown associates with amyloid positivity, increased AD pathology, and cognitive impairment. Highlights: At-home sleep EEG is a potential biomarker of neural circuits linked to memory. Circuit precision is associated with amyloid positivity in asymptomatic aging adults. Levels of CSF amyloid and tau also correlate with circuit precision in sleep EEG. Theta burst EEG power is decreased in very early mild cognitive impairment. This technique may enable inexpensive wearable EEGs for monitoring brain health.

Original languageEnglish
Pages (from-to)301-315
Number of pages15
JournalAlzheimer's and Dementia
Volume20
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • EEG
  • amyloid
  • memory
  • mild cognitive impairment
  • slow wave
  • tau

Fingerprint

Dive into the research topics of 'Mapping sleep's oscillatory events as a biomarker of Alzheimer's disease'. Together they form a unique fingerprint.

Cite this