Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies

Research output: Contribution to journalReview articlepeer-review

186 Scopus citations

Abstract

Most current treatments for epilepsy are symptomatic therapies that suppress seizures but do not affect the underlying course or prognosis of epilepsy. The need for disease-modifying or "antiepileptogenic" treatments for epilepsy is widely recognized, but no such preventive therapies have yet been established for clinical use. A rational strategy for preventing epilepsy is to target primary signaling pathways that initially trigger the numerous downstream mechanisms mediating epileptogenesis. The mammalian target of rapamycin (mTOR) pathway represents a logical candidate, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. The importance of the mTOR pathway in epileptogenesis is best illustrated by tuberous sclerosis complex (TSC), one of the most common genetic causes of epilepsy. In mouse models of TSC, mTOR inhibitors prevent the development of epilepsy and underlying brain abnormalities associated with epileptogenesis. Accumulating evidence suggests that mTOR also participates in epileptogenesis due to a variety of other causes, including focal cortical dysplasia and acquired brain injuries, such as in animal models following status epilepticus or traumatic brain injury. Therefore, mTOR inhibition may represent a potential antiepileptogenic therapy for diverse types of epilepsy, including both genetic and acquired epilepsies.

Original languageEnglish
Pages (from-to)27-36
Number of pages10
JournalEpilepsia
Volume51
Issue number1
DOIs
StatePublished - 2010

Keywords

  • Epilepsy
  • Epileptogenesis
  • Seizure
  • Traumatic brain injury

Fingerprint

Dive into the research topics of 'Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies'. Together they form a unique fingerprint.

Cite this