TY - JOUR
T1 - Machine Learning to Predict Treatment in Oropharyngeal Squamous Cell Carcinoma
AU - Karadaghy, Omar A.
AU - Shew, Matthew
AU - New, Jacob
AU - Bur, Andrés M.
N1 - Publisher Copyright:
© 2021 S. Karger AG, Basel. All rights reserved.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Objectives: This study seeks to (1) demonstrate how machine learning (ML) can be used for prediction modeling by predicting the treatment patients with T1-2, N0-N1 oropharyngeal squamous cell carcinoma (OPSCC) receive and (2) assess the impact patient, socioeconomic, regional, and institutional factors have in the treatment of this population. Methods: A retrospective cohort of adults diagnosed with T1-2, N0-N1 OPSCC from 2004 to 2013 was obtained using the National Cancer Database. The data was split into 80/20 distribution for training and testing, respectively. Various ML algorithms were explored for development. Area under the curve (AUC), accuracy, precision, and recall were calculated for the final model. Results: Among the 19,111 patients in the study, the mean (standard deviation) age was 61.3 (10.8) years, 14,034 (73%) were male, and 17,292 (91%) were white. Surgery was the primary treatment in 9,533 (50%) cases and radiation in 9,578 (50%) cases. The model heavily utilized T-stage, primary site, N-stage, grade, and type of treatment facility to predict the primary treatment modality. The final model yielded an AUC of 78% (95% CI, 77-79%), accuracy of 71%, precision of 72%, and recall of 71%. Conclusion: This study created a ML model utilizing clinical variables to predict primary treatment modality for T1-2, N0-N1 OPSCC. This study demonstrates how ML can be used for prediction modeling while also highlighting that tumor and facility realted variables impact the decision making process on a national level.
AB - Objectives: This study seeks to (1) demonstrate how machine learning (ML) can be used for prediction modeling by predicting the treatment patients with T1-2, N0-N1 oropharyngeal squamous cell carcinoma (OPSCC) receive and (2) assess the impact patient, socioeconomic, regional, and institutional factors have in the treatment of this population. Methods: A retrospective cohort of adults diagnosed with T1-2, N0-N1 OPSCC from 2004 to 2013 was obtained using the National Cancer Database. The data was split into 80/20 distribution for training and testing, respectively. Various ML algorithms were explored for development. Area under the curve (AUC), accuracy, precision, and recall were calculated for the final model. Results: Among the 19,111 patients in the study, the mean (standard deviation) age was 61.3 (10.8) years, 14,034 (73%) were male, and 17,292 (91%) were white. Surgery was the primary treatment in 9,533 (50%) cases and radiation in 9,578 (50%) cases. The model heavily utilized T-stage, primary site, N-stage, grade, and type of treatment facility to predict the primary treatment modality. The final model yielded an AUC of 78% (95% CI, 77-79%), accuracy of 71%, precision of 72%, and recall of 71%. Conclusion: This study created a ML model utilizing clinical variables to predict primary treatment modality for T1-2, N0-N1 OPSCC. This study demonstrates how ML can be used for prediction modeling while also highlighting that tumor and facility realted variables impact the decision making process on a national level.
KW - Artificial intelligence
KW - Decision forest
KW - Machine learning
KW - Oropharyngeal squamous cell carcinoma
KW - Treatment
UR - http://www.scopus.com/inward/record.url?scp=85102953262&partnerID=8YFLogxK
U2 - 10.1159/000515334
DO - 10.1159/000515334
M3 - Article
C2 - 33730728
AN - SCOPUS:85102953262
SN - 0301-1569
VL - 84
SP - 39
EP - 46
JO - ORL
JF - ORL
IS - 1
ER -