TY - JOUR
T1 - Machine Learning Analysis Reveals Novel Neuroimaging and Clinical Signatures of Frailty in HIV
AU - Paul, Robert H.
AU - Cho, Kyu S.
AU - Luckett, Patrick
AU - Strain, Jeremy F.
AU - Belden, Andrew C.
AU - Bolzenius, Jacob D.
AU - Navid, Jaimie
AU - Garcia-Egan, Paola M.
AU - Cooley, Sarah A.
AU - Wisch, Julie K.
AU - Boerwinkle, Anna H.
AU - Tomov, Dimitre
AU - Obosi, Abel
AU - Mannarino, Julie A.
AU - Ances, Beau M.
N1 - Publisher Copyright:
© 2020 Lippincott Williams and Wilkins. All rights reserved.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Background:Frailty is an important clinical concern for the aging population of people living with HIV (PLWH). The objective of this study was to identify the combination of risk features that distinguish frail from nonfrail individuals.Setting:Machine learning analysis of highly dimensional risk features was performed on a clinical cohort of PLWH.Methods:Participants included 105 older (average age = 55.6) PLWH, with at least a 3-month history of combination antiretroviral therapy (median CD4 = 546). Predictors included demographics, HIV clinical markers, comorbid health conditions, cognition, and neuroimaging (ie, volumetrics, resting-state functional connectivity, and cerebral blood flow). Gradient-boosted multivariate regressions were implemented to establish linear and interactive classification models. Model performance was determined by sensitivity/specificity (F1 score) with 5-fold cross validation.Results:The linear gradient-boosted multivariate regression classifier included lower current CD4 count, lower psychomotor performance, and multiple neuroimaging indices (volumes, network connectivity, and blood flow) in visual and motor brain systems (F1 score = 71%; precision = 84%; and sensitivity = 66%). The interactive model identified novel synergies between neuroimaging features, female sex, symptoms of depression, and current CD4 count.Conclusions:Data-driven algorithms built from highly dimensional clinical and brain imaging features implicate disruption to the visuomotor system in older PLWH designated as frail individuals. Interactions between lower CD4 count, female sex, depressive symptoms, and neuroimaging features suggest potentiation of risk mechanisms. Longitudinal data-driven studies are needed to guide clinical strategies capable of preventing the development of frailty as PLWH reach advanced age.
AB - Background:Frailty is an important clinical concern for the aging population of people living with HIV (PLWH). The objective of this study was to identify the combination of risk features that distinguish frail from nonfrail individuals.Setting:Machine learning analysis of highly dimensional risk features was performed on a clinical cohort of PLWH.Methods:Participants included 105 older (average age = 55.6) PLWH, with at least a 3-month history of combination antiretroviral therapy (median CD4 = 546). Predictors included demographics, HIV clinical markers, comorbid health conditions, cognition, and neuroimaging (ie, volumetrics, resting-state functional connectivity, and cerebral blood flow). Gradient-boosted multivariate regressions were implemented to establish linear and interactive classification models. Model performance was determined by sensitivity/specificity (F1 score) with 5-fold cross validation.Results:The linear gradient-boosted multivariate regression classifier included lower current CD4 count, lower psychomotor performance, and multiple neuroimaging indices (volumes, network connectivity, and blood flow) in visual and motor brain systems (F1 score = 71%; precision = 84%; and sensitivity = 66%). The interactive model identified novel synergies between neuroimaging features, female sex, symptoms of depression, and current CD4 count.Conclusions:Data-driven algorithms built from highly dimensional clinical and brain imaging features implicate disruption to the visuomotor system in older PLWH designated as frail individuals. Interactions between lower CD4 count, female sex, depressive symptoms, and neuroimaging features suggest potentiation of risk mechanisms. Longitudinal data-driven studies are needed to guide clinical strategies capable of preventing the development of frailty as PLWH reach advanced age.
KW - HIV
KW - frailty
KW - machine learning
KW - neuroimaging
UR - http://www.scopus.com/inward/record.url?scp=85087320175&partnerID=8YFLogxK
U2 - 10.1097/QAI.0000000000002360
DO - 10.1097/QAI.0000000000002360
M3 - Article
C2 - 32251142
AN - SCOPUS:85087320175
SN - 1525-4135
VL - 84
SP - 414
EP - 421
JO - Journal of Acquired Immune Deficiency Syndromes
JF - Journal of Acquired Immune Deficiency Syndromes
IS - 4
ER -