Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes

Derek A. Jones, James P. Gaewsky, Mireille E. Kelley, Ashley A. Weaver, Anna N. Miller, Joel D. Stitzel

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Introduction: The objective of this study was to reconstruct 4 real-world motor vehicle crashes (MVCs), 2 with lumbar vertebral fractures and 2 without vertebral fractures in order to elucidate the MVC and/or restraint variables that increase this injury risk. Methods: A finite element (FE) simplified vehicle model (SVM) was used in conjunction with a previously developed semi-automated tuning method to arrive at 4 SVMs that were tuned to mimic frontal crash responses of a 2006 Chevrolet Cobalt, 2012 Ford Escape, 2007 Hummer H3, and 2002 Chevrolet Cavalier. Real-world crashes in the first 2 vehicles resulted in lumbar vertebrae fractures, whereas the latter 2 did not. Once each SVM was tuned to its corresponding vehicle, the Total HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations in each SVM by varying 5 parameters using a Latin hypercube design (LHD) of experiments: seat track position, seatback angle, steering column angle, steering column telescoping position, and d-ring height. For each case, the event data recorder (EDR) crash pulse was used to apply kinematic boundary conditions to the model. By analyzing cross-sectional vertebral loads, vertebral bending moments, and maximum principal strain and stress in both cortical and trabecular bone, injury metric response as a function of posture and restraint parameters was computed. Results: Tuning the SVM to specific vehicle models produced close matches between the simulated and experimental crash test responses for head, T6, and pelvis resultant acceleration; left and right femur loads; and shoulder and lap belt loads. Though vertebral load in the THUMS simulations was highly similar between injury cases and noninjury cases, the amount of bending moment was much higher for the injury cases. Seatback angle had a large effect on the maximum compressive load and bending moment in the lumbar spine, indicating the upward tilt of the seat pan in conjunction with precrash positioning may increase the likelihood of suffering lumbar injury even in frontal, planar MVCs. Conclusion: In conclusion, precrash positioning has a large effect on lumbar injury metrics. The lack of lumbar injury criteria in regulatory crash tests may have led to inadvertent design of seat pans that work to apply axial force to the spinal column during frontal crashes.

Original languageEnglish
Pages (from-to)109-115
Number of pages7
JournalTraffic Injury Prevention
StatePublished - Sep 12 2016


  • Lumbar
  • finite element
  • injury
  • vertebra


Dive into the research topics of 'Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes'. Together they form a unique fingerprint.

Cite this