TY - JOUR
T1 - Localized hotspots drive continental geography of abnormal amphibians on U.S. wildlife refuges
AU - Reeves, Mari K.
AU - Medley, Kimberly A.
AU - Pinkney, Alfred E.
AU - Holyoak, Marcel
AU - Johnson, Pieter T.J.
AU - Lannoo, Michael J.
PY - 2013/11/18
Y1 - 2013/11/18
N2 - Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.
AB - Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.
UR - http://www.scopus.com/inward/record.url?scp=84894090085&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0077467
DO - 10.1371/journal.pone.0077467
M3 - Article
C2 - 24260103
AN - SCOPUS:84894090085
SN - 1932-6203
VL - 8
JO - PloS one
JF - PloS one
IS - 11
M1 - e77467
ER -