TY - JOUR
T1 - LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2
AU - Nguyen, Hannah
AU - Allali-Hassani, Abdellah
AU - Antonysamy, Stephen
AU - Chang, Shawn
AU - Chen, Lisa Hong
AU - Curtis, Carmen
AU - Emtage, Spencer
AU - Fan, Li
AU - Gheyi, Tarun
AU - Li, Fengling
AU - Liu, Shichong
AU - Martin, Joseph R.
AU - Mendel, David
AU - Olsen, Jonathan B.
AU - Pelletier, Laura
AU - Shatseva, Tatiana
AU - Wu, Song
AU - Zhang, Feiyu Fred
AU - Arrowsmith, Cheryl H.
AU - Brown, Peter J.
AU - Campbell, Robert M.
AU - Garcia, Benjamin A.
AU - Barsyte-Lovejoy, Dalia
AU - Mader, Mary
AU - Vedadi, Masoud
N1 - Publisher Copyright:
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2015/5/29
Y1 - 2015/5/29
N2 - SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.
AB - SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.
UR - http://www.scopus.com/inward/record.url?scp=84930225536&partnerID=8YFLogxK
U2 - 10.1074/jbc.M114.626861
DO - 10.1074/jbc.M114.626861
M3 - Article
C2 - 25825497
AN - SCOPUS:84930225536
SN - 0021-9258
VL - 290
SP - 13641
EP - 13653
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -