TY - JOUR
T1 - Liver-directed gene therapy
T2 - Quantitative evaluation of promoter elements by using in vivo retroviral transduction
AU - Rettinger, Steven D.
AU - Kennedy, Susan C.
AU - Wu, Xiaoyun
AU - Saylors, Robert L.
AU - Hafenrichter, Daniel G.
AU - Flye, M. Wayne
AU - Ponder, Katherine Parker
PY - 1994/2/15
Y1 - 1994/2/15
N2 - Liver-directed gene therapy will be applicable to many inherited diseases. Although various protocols have been devised for in vivo delivery of retrovirus, comparison of hepatocyte transduction frequencies has been difficult due to variations in retroviral titer and a paucity of DNA data. We have previously reported an in vivo rat hepatocyte transduction technique which involves 70% hepatectomy followed 24 hr later by portal vein injection of retrovirus during hepatic in-flow occlusion. In this study, we employed this method and concentrated retroviral preparations to achieve transduction of up to 15% of hepatocytes as determined by a quantitative PCR assay. As an initial step toward identifying promoters which lead to high-level long-term expression of retroviral transduced genes, we used our in vivo delivery system to compare the Moloney murine leukemia virus long terminal repeat (LTR) promoter with the promoter for the large subunit of murine RNA polymerase II (Pol-II). Human α1-antitrypsin (hAAT) was used as the reporter gene to facilitate long-term analysis of expression. Serum hAAT levels were higher for the Pol-II promoter (143 ng/ml) than for the LTR promoter (50 ng/ml). This difference was consistent with the higher transduction frequency observed for the Pol-II-hAAT vector. Although serum hAAT expression was sustained for up to 1 year in six of eight Pol-II-hAAT- transduced rats and three of five LTR-hAAT-transduced rats and was proportional to hAAT mRNA level and proviral DNA frequency, in vivo expression was significantly lower than in transduced tissue culture cells. We conclude that a high frequency of in vivo transduction can be achieved by using retroviral vectors and our rapid transduction protocol, but transduced gene expression remains a serious problem. The quantitative assays described herein will facilitate in vivo comparisons of gene regulatory elements.
AB - Liver-directed gene therapy will be applicable to many inherited diseases. Although various protocols have been devised for in vivo delivery of retrovirus, comparison of hepatocyte transduction frequencies has been difficult due to variations in retroviral titer and a paucity of DNA data. We have previously reported an in vivo rat hepatocyte transduction technique which involves 70% hepatectomy followed 24 hr later by portal vein injection of retrovirus during hepatic in-flow occlusion. In this study, we employed this method and concentrated retroviral preparations to achieve transduction of up to 15% of hepatocytes as determined by a quantitative PCR assay. As an initial step toward identifying promoters which lead to high-level long-term expression of retroviral transduced genes, we used our in vivo delivery system to compare the Moloney murine leukemia virus long terminal repeat (LTR) promoter with the promoter for the large subunit of murine RNA polymerase II (Pol-II). Human α1-antitrypsin (hAAT) was used as the reporter gene to facilitate long-term analysis of expression. Serum hAAT levels were higher for the Pol-II promoter (143 ng/ml) than for the LTR promoter (50 ng/ml). This difference was consistent with the higher transduction frequency observed for the Pol-II-hAAT vector. Although serum hAAT expression was sustained for up to 1 year in six of eight Pol-II-hAAT- transduced rats and three of five LTR-hAAT-transduced rats and was proportional to hAAT mRNA level and proviral DNA frequency, in vivo expression was significantly lower than in transduced tissue culture cells. We conclude that a high frequency of in vivo transduction can be achieved by using retroviral vectors and our rapid transduction protocol, but transduced gene expression remains a serious problem. The quantitative assays described herein will facilitate in vivo comparisons of gene regulatory elements.
KW - α-antitrypsin
UR - http://www.scopus.com/inward/record.url?scp=0028158811&partnerID=8YFLogxK
U2 - 10.1073/pnas.91.4.1460
DO - 10.1073/pnas.91.4.1460
M3 - Article
C2 - 8108431
AN - SCOPUS:0028158811
SN - 0027-8424
VL - 91
SP - 1460
EP - 1464
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 4
ER -