TY - JOUR
T1 - Liraglutide improves hypertension and metabolic perturbation in a rat model of polycystic ovarian syndrome
AU - Hoang, Vanessa
AU - Bi, Jiangjiang
AU - Mohankumar, Sheba M.
AU - Vyas, Arpita K.
N1 - Publisher Copyright:
© 2015 Hoang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/5
Y1 - 2015/5
N2 - Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 58%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83 g/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05) and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01). Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01). DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT induced metabolic and blood pressure deficits associated with PCOS.
AB - Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 58%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83 g/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05) and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01). Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01). DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT induced metabolic and blood pressure deficits associated with PCOS.
UR - http://www.scopus.com/inward/record.url?scp=84960154571&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0126119
DO - 10.1371/journal.pone.0126119
M3 - Article
C2 - 26010091
AN - SCOPUS:84960154571
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 5
M1 - e0126119
ER -