Approximately one-third of the human colonic microbiome is formed by bacteria from the genus Bacteroides. These bacteria produce a large amount of uniformly sized outer membrane vesicles (OMVs), which are equipped with hydrolytic enzymes that play a role in the degradation of diet- and host-derived glycans. In this work, we characterize the lipid composition of membranes and OMVs from Bacteroides thetaiotaomicron VPI-5482. Liquid chromatography-mass spectrometry (LC-MS) analysis indicated that OMVs carry sphingolipids, glycerophospholipids, and serine-dipeptide lipids. Sphingolipid species represent more than 50% of the total lipid content of OMVs. The most abundant sphingolipids in OMVs are ethanolamine phosphoceramide (EPC) and inositol phosphoceramide (IPC). Bioinformatics analysis allowed the identification of the BT1522-1526 operon putatively involved in IPC synthesis. Mutagenesis studies revealed that BT1522-1526 is essential for the synthesis of phosphatidylinositol (PI) and IPC, confirming the role of this operon in the biosynthesis of IPC. BT1522-1526 mutant strains lacking IPC produced OMVs that were indistinguishable from the wild-type strain, indicating that IPC sphingolipid species are not involved in OMV biogenesis. Given the known role of sphingolipids in immunomodulation, we suggest that OMVs may act as long-distance vehicles for the delivery of sphingolipids in the human gut.

Original languageEnglish
Article numbere00634-21
JournalMicrobiology spectrum
Issue number1
StatePublished - Feb 2022


  • Bacteroides
  • Ceramide
  • OMV
  • Sphingolipids


Dive into the research topics of 'Lipidomics Analysis of Outer Membrane Vesicles and Elucidation of the Inositol Phosphoceramide Biosynthetic Pathway in Bacteroides thetaiotaomicron'. Together they form a unique fingerprint.

Cite this