Ligand-induced desensitization of 125I-epidermal growth factor internalization

D. Kuppuswamy, L. J. Pike

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentration of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.

Original languageEnglish
Pages (from-to)3357-3363
Number of pages7
JournalJournal of Biological Chemistry
Issue number6
StatePublished - 1989


Dive into the research topics of 'Ligand-induced desensitization of 125I-epidermal growth factor internalization'. Together they form a unique fingerprint.

Cite this