Ligand and G-protein selectivity in the κ-opioid receptor

Jianming Han, Jingying Zhang, Antonina L. Nazarova, Sarah M. Bernhard, Brian E. Krumm, Lei Zhao, Jordy Homing Lam, Vipin A. Rangari, Susruta Majumdar, David E. Nichols, Vsevolod Katritch, Peng Yuan, Jonathan F. Fay, Tao Che

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The κ-opioid receptor (KOR) represents a highly desirable therapeutic target for treating not only pain but also addiction and affective disorders1. However, the development of KOR analgesics has been hindered by the associated hallucinogenic side effects2. The initiation of KOR signalling requires the Gi/o-family proteins including the conventional (Gi1, Gi2, Gi3, GoA and GoB) and nonconventional (Gz and Gg) subtypes. How hallucinogens exert their actions through KOR and how KOR determines G-protein subtype selectivity are not well understood. Here we determined the active-state structures of KOR in a complex with multiple G-protein heterotrimers—Gi1, GoA, Gz and Gg—using cryo-electron microscopy. The KOR–G-protein complexes are bound to hallucinogenic salvinorins or highly selective KOR agonists. Comparisons of these structures reveal molecular determinants critical for KOR–G-protein interactions as well as key elements governing Gi/o-family subtype selectivity and KOR ligand selectivity. Furthermore, the four G-protein subtypes display an intrinsically different binding affinity and allosteric activity on agonist binding at KOR. These results provide insights into the actions of opioids and G-protein-coupling specificity at KOR and establish a foundation to examine the therapeutic potential of pathway-selective agonists of KOR.

Original languageEnglish
Pages (from-to)417-425
Number of pages9
JournalNature
Volume617
Issue number7960
DOIs
StatePublished - May 11 2023

Fingerprint

Dive into the research topics of 'Ligand and G-protein selectivity in the κ-opioid receptor'. Together they form a unique fingerprint.

Cite this