TY - JOUR
T1 - Levodopa effects on [11C]raclopride binding in the resting human brain
AU - Black, Kevin J.
AU - Piccirillo, Marilyn L.
AU - Koller, Jonathan M.
AU - Hseih, Tiffany
AU - Wang, Lei
AU - Mintun, Mark A.
N1 - Publisher Copyright:
© 2015 Black KJ et al.
PY - 2015/1/23
Y1 - 2015/1/23
N2 - Rationale: Synaptic dopamine (DA) release induced by amphetamine or other experimental manipulations can displace [ 11C]raclopride (RAC*) from dopamine D2-like receptors. We hypothesized that exogenous levodopa might increase dopamine release at striatal synapses under some conditions but not others, allowing a more naturalistic assessment of presynaptic dopaminergic function. Presynaptic dopaminergic abnormalities have been reported in Tourette syndrome (TS). Objective: Test whether levodopa induces measurable synaptic DA release in healthy people at rest, and gather pilot data in TS. Methods: This double-blind crossover study used RAC* and positron emission tomography (PET) to measure synaptic dopamine release 4 times in each of 10 carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of levodopa on one day and placebo on another (in random order). Five subjects had TS and 5 were matched controls. RAC* binding potential (BP ND) was quantified in predefined anatomical volumes of interest (VOIs). A separate analysis compared BP ND voxel by voxel over the entire brain. Results: DA release declined between the first and second scan of each day (p=0.012), including on the placebo day. Levodopa did not significantly reduce striatal RAC* binding and striatal binding did not differ significantly between TS and control groups. However, levodopa's effect on DA release differed significantly in a right midbrain region (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects but increased BP ND by 74% in TS subjects. Discussion: Decreased DA release on the second scan of the day is consistent with the few previous studies with a similar design, and may indicate habituation to study procedures. We hypothesize that mesostriatal DA neurons fire relatively little while subjects rest, possibly explaining the non-significant effect of levodopa on striatal RAC* binding. The modest sample size argues for caution in interpreting the group difference in midbrain DA release with levodopa.
AB - Rationale: Synaptic dopamine (DA) release induced by amphetamine or other experimental manipulations can displace [ 11C]raclopride (RAC*) from dopamine D2-like receptors. We hypothesized that exogenous levodopa might increase dopamine release at striatal synapses under some conditions but not others, allowing a more naturalistic assessment of presynaptic dopaminergic function. Presynaptic dopaminergic abnormalities have been reported in Tourette syndrome (TS). Objective: Test whether levodopa induces measurable synaptic DA release in healthy people at rest, and gather pilot data in TS. Methods: This double-blind crossover study used RAC* and positron emission tomography (PET) to measure synaptic dopamine release 4 times in each of 10 carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of levodopa on one day and placebo on another (in random order). Five subjects had TS and 5 were matched controls. RAC* binding potential (BP ND) was quantified in predefined anatomical volumes of interest (VOIs). A separate analysis compared BP ND voxel by voxel over the entire brain. Results: DA release declined between the first and second scan of each day (p=0.012), including on the placebo day. Levodopa did not significantly reduce striatal RAC* binding and striatal binding did not differ significantly between TS and control groups. However, levodopa's effect on DA release differed significantly in a right midbrain region (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects but increased BP ND by 74% in TS subjects. Discussion: Decreased DA release on the second scan of the day is consistent with the few previous studies with a similar design, and may indicate habituation to study procedures. We hypothesize that mesostriatal DA neurons fire relatively little while subjects rest, possibly explaining the non-significant effect of levodopa on striatal RAC* binding. The modest sample size argues for caution in interpreting the group difference in midbrain DA release with levodopa.
UR - http://www.scopus.com/inward/record.url?scp=84931287745&partnerID=8YFLogxK
U2 - 10.12688/f1000research.5672.1
DO - 10.12688/f1000research.5672.1
M3 - Article
C2 - 26180632
AN - SCOPUS:84931287745
SN - 2046-1402
VL - 4
JO - F1000Research
JF - F1000Research
ER -