Abstract

The α-hemolysin (HlyA) of uropathogenic Escherichia coli (UPEC) is a pore-forming toxin (PFT) that is thought to function by disrupting the host cell plasma membrane. Although CD18 (LFA-1) has been implicated as a receptor on myeloid cells, the mechanisms underlying HlyA cytotoxicity to epithelial cells are poorly defined. Here, we show that HlyA secretion by UPEC markedly intensifies renal tubular epithelial injury in a murine model of ascending pyelonephritis. A CRISPR-Cas9 loss-of-function screen in renal collecting duct cells revealed an unexpected requirement for clathrin-mediated endocytosis in HlyA-induced cytotoxicity. Following internalization, HlyA triggered lysosomal permeabilization, resulting in protease leakage, cytoplasmic acidification, and mitochondrial impairment, culminating in rapid epithelial cell death—a pathway distinct from canonical membrane-disrupting mechanisms of other PFTs. Moreover, we identify the low-density lipoprotein receptor (LDLR) as a critical epithelial receptor for HlyA; genetic ablation or competitive inhibition of the HlyA–LDLR interaction fully abrogated cytotoxicity. Our findings detail a paradigm for HlyA function in which epithelial toxicity relies on LDLR-mediated endocytic uptake rather than plasma membrane poration. These mechanistic insights illuminate potential therapeutic strategies to attenuate HlyA-mediated tissue damage during UPEC infections.

Original languageEnglish
Article numbere2505482122
JournalProceedings of the National Academy of Sciences of the United States of America
Volume122
Issue number24
DOIs
StatePublished - Jun 17 2025

Keywords

  • LDLR
  • RTX toxin
  • hemolysin

Fingerprint

Dive into the research topics of 'LDL receptor–mediated endocytosis of Escherichia coli α-hemolysin mediates renal epithelial toxicity'. Together they form a unique fingerprint.

Cite this