TY - JOUR
T1 - Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes
AU - Chen, Ying Maggie
AU - Zhou, Yuefang
AU - Go, Gloriosa
AU - Marmerstein, Joseph T.
AU - Kikkawa, Yamato
AU - Miner, Jeffrey H.
PY - 2013/7/31
Y1 - 2013/7/31
N2 - Mutations in the laminin β2 gene (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. LAMB2 is a component of the laminin-521 (α5β2γ1) trimer, an important constituent of the glomerular basement membrane (GBM). The C321R-LAMB2 missense mutation leads to congenital nephrotic syndrome but only mild extrarenal symptoms; the mechanisms underlying the development of proteinuria with this mutation are unclear. We generated three transgenic mouse lines, in which rat C321R-LAMB2 replaced mouse LAMB2 in the GBM. During the first postnatal month, expression of C321R-LAMB2 attenuated the severe proteinuria exhibited by Lamb2-/- mice in a dose-dependent fashion; proteinuria eventually increased, however, leading to renal failure. The C321R mutation caused defective secretion of laminin-521 from podocytes to the GBM accompanied by podocyte endoplasmic reticulum (ER) stress, likely resulting from protein misfolding. Moreover, ER stress preceded the onset of significant proteinuria and was manifested by induction of the ER-initiated apoptotic signal C/EBP homologous protein (CHOP), ER distention, and podocyte injury. Treatment of cells expressing C321R-LAMB2 with the chemical chaperone taurodeoxycholic acid (TUDCA), which can facilitate protein folding and trafficking, greatly increased the secretion of the mutant LAMB2. Taken together, these results suggest that the mild variant of Pierson syndrome caused by the C321R-LAMB2 mutation may be a prototypical ER storage disease, which may benefit from treatment approaches that target the handling of misfolded proteins.
AB - Mutations in the laminin β2 gene (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. LAMB2 is a component of the laminin-521 (α5β2γ1) trimer, an important constituent of the glomerular basement membrane (GBM). The C321R-LAMB2 missense mutation leads to congenital nephrotic syndrome but only mild extrarenal symptoms; the mechanisms underlying the development of proteinuria with this mutation are unclear. We generated three transgenic mouse lines, in which rat C321R-LAMB2 replaced mouse LAMB2 in the GBM. During the first postnatal month, expression of C321R-LAMB2 attenuated the severe proteinuria exhibited by Lamb2-/- mice in a dose-dependent fashion; proteinuria eventually increased, however, leading to renal failure. The C321R mutation caused defective secretion of laminin-521 from podocytes to the GBM accompanied by podocyte endoplasmic reticulum (ER) stress, likely resulting from protein misfolding. Moreover, ER stress preceded the onset of significant proteinuria and was manifested by induction of the ER-initiated apoptotic signal C/EBP homologous protein (CHOP), ER distention, and podocyte injury. Treatment of cells expressing C321R-LAMB2 with the chemical chaperone taurodeoxycholic acid (TUDCA), which can facilitate protein folding and trafficking, greatly increased the secretion of the mutant LAMB2. Taken together, these results suggest that the mild variant of Pierson syndrome caused by the C321R-LAMB2 mutation may be a prototypical ER storage disease, which may benefit from treatment approaches that target the handling of misfolded proteins.
UR - http://www.scopus.com/inward/record.url?scp=84881093680&partnerID=8YFLogxK
U2 - 10.1681/ASN.2012121149
DO - 10.1681/ASN.2012121149
M3 - Article
C2 - 23723427
AN - SCOPUS:84881093680
SN - 1046-6673
VL - 24
SP - 1223
EP - 1233
JO - Journal of the American Society of Nephrology
JF - Journal of the American Society of Nephrology
IS - 8
ER -