TY - JOUR
T1 - L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment
AU - Rajadhyaksha, Anjali
AU - Husson, Isabelle
AU - Satpute, Shirish S.
AU - Küppenbender, Karsten D.
AU - Ren, J. Q.
AU - Guerriero, Rejean M.
AU - Standaert, David G.
AU - Kosofsky, Barry E.
PY - 2004/8/25
Y1 - 2004/8/25
N2 - L-type Ca2+ channels (LTCCs) play an important role in chronic psychostimulant-induced behaviors. However, the Ca2+ second messenger pathways activated by LTCCs after acute and recurrent psychostimulant administration that contribute to drug-induced molecular adaptations are poorly understood. Using a chronic amphetamine treatment paradigm in rats, we have examined the role of LTCCs in activating the mitogen-activated protein (MAP) kinase pathway in the ventral tegmental area (VTA), a primary target for the reinforcing properties of psychostimulants. Using immunoblot and immunohistochemical analyses, we find that in chronic saline-treated rats a challenge injection of amphetamine increases phosphorylation of MAP [extracellular signal-regulated kinase 1/2 (ERK1/2)] kinase in the VTA that is independent of LTCCs. However, in chronic amphetamine-treated rats there is no increase in amphetamine-mediated ERK1/2 phosphorylation unless LTCCs are blocked, in which case there is robust phosphorylation in VTA dopamine neurons. Examination of the expression of phosphatases reveals an increase in calcineurin [protein phosphatase 2B (PP2B)] and MAP kinase phosphatase-1 (MKP-1) in the VTA. Using in situ hybridization histochemistry and immunoblot analyses, we further examined the mRNA and protein expression of the LTCC subtypes Ca v1.2 and Cav1.3 in VTA dopamine neurons in drug-naive animals and in rats after chronic amphetamine treatment. We found an increase in Cav1.2 mRNA and protein levels, with no change in Cav1.3. Together, our results suggest that one aspect of LTCC-induced changes in second messenger pathways after chronic amphetamine exposure involves activation of the MAP kinase phosphatase pathway by upregulation of Cav1.2 in VTA dopaminergic neurons.
AB - L-type Ca2+ channels (LTCCs) play an important role in chronic psychostimulant-induced behaviors. However, the Ca2+ second messenger pathways activated by LTCCs after acute and recurrent psychostimulant administration that contribute to drug-induced molecular adaptations are poorly understood. Using a chronic amphetamine treatment paradigm in rats, we have examined the role of LTCCs in activating the mitogen-activated protein (MAP) kinase pathway in the ventral tegmental area (VTA), a primary target for the reinforcing properties of psychostimulants. Using immunoblot and immunohistochemical analyses, we find that in chronic saline-treated rats a challenge injection of amphetamine increases phosphorylation of MAP [extracellular signal-regulated kinase 1/2 (ERK1/2)] kinase in the VTA that is independent of LTCCs. However, in chronic amphetamine-treated rats there is no increase in amphetamine-mediated ERK1/2 phosphorylation unless LTCCs are blocked, in which case there is robust phosphorylation in VTA dopamine neurons. Examination of the expression of phosphatases reveals an increase in calcineurin [protein phosphatase 2B (PP2B)] and MAP kinase phosphatase-1 (MKP-1) in the VTA. Using in situ hybridization histochemistry and immunoblot analyses, we further examined the mRNA and protein expression of the LTCC subtypes Ca v1.2 and Cav1.3 in VTA dopamine neurons in drug-naive animals and in rats after chronic amphetamine treatment. We found an increase in Cav1.2 mRNA and protein levels, with no change in Cav1.3. Together, our results suggest that one aspect of LTCC-induced changes in second messenger pathways after chronic amphetamine exposure involves activation of the MAP kinase phosphatase pathway by upregulation of Cav1.2 in VTA dopaminergic neurons.
KW - Addiction
KW - Amphetamine
KW - Ca1.2
KW - ERK1/2 phosphorylation
KW - L-type Ca channels
KW - VTA
UR - http://www.scopus.com/inward/record.url?scp=4444308912&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0612-04.2004
DO - 10.1523/JNEUROSCI.0612-04.2004
M3 - Article
C2 - 15329393
AN - SCOPUS:4444308912
SN - 0270-6474
VL - 24
SP - 7464
EP - 7476
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 34
ER -