TY - JOUR
T1 - Kv12-encoded K+ channels drive the day–night switch in the repetitive firing rates of SCN neurons
AU - Hermanstyne, Tracey O.
AU - Yang, Nien Du
AU - Granados-Fuentes, Daniel
AU - Li, Xiaofan
AU - Mellor, Rebecca L.
AU - Jegla, Timothy
AU - Herzog, Erik D.
AU - Nerbonne, Jeanne M.
N1 - Publisher Copyright:
© 2023 Hermanstyne et al.
PY - 2023/9/4
Y1 - 2023/9/4
N2 - Considerable evidence suggests that day–night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K+ channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1−/−)orKcnh3 (Kv12.2−/−) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1−/− and Kv12.2−/− than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1−/−, Kv12.2−/−, and WT SCN neurons, and the day–night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1−/− and Kv12.2−/− SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, the pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of the nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1−/−, Kv12.2−/−, and Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals.
AB - Considerable evidence suggests that day–night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K+ channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1−/−)orKcnh3 (Kv12.2−/−) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1−/− and Kv12.2−/− than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1−/−, Kv12.2−/−, and WT SCN neurons, and the day–night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1−/− and Kv12.2−/− SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, the pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of the nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1−/−, Kv12.2−/−, and Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals.
UR - http://www.scopus.com/inward/record.url?scp=85165470590&partnerID=8YFLogxK
U2 - 10.1085/jgp.202213310
DO - 10.1085/jgp.202213310
M3 - Article
C2 - 37516908
AN - SCOPUS:85165470590
SN - 0022-1295
VL - 155
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 9
M1 - e202213310
ER -