TY - CONF
T1 - Joint identification of network communities and semantics via integrative modeling of network topologies and node contents
AU - He, Dongxiao
AU - Feng, Zhiyong
AU - Jin, Di
AU - Wang, Xiaobao
AU - Zhang, Weixiong
N1 - Funding Information:
an internal research grant of Jianghan University, Wuhan,
Funding Information:
Zhiyong Feng is the corresponding author. The work was supported by Natural Science Foundation of China (61502334, 61303110, 61373035, 61133011), the Talent
Publisher Copyright:
Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2017
Y1 - 2017
N2 - The objective of discovering network communities, an essential step in complex systems analysis, is two-fold: identification of functional modules and their semantics at the same time. However, most existing community-finding methods have focused on finding communities using network topologies, and the problem of extracting module semantics has not been well studied and node contents, which often contain semantic information of nodes and networks, have not been fully utilized. We considered the problem of identifying network communities and module semantics at the same time. We introduced a novel generative model with two closely correlated parts, one for communities and the other for semantics. We developed a co-learning strategy to jointly train the two parts of the model by combining a nested EM algorithm and belief propagation. By extracting the latent correlation between the two parts, our new method is not only robust for finding communities and semantics, but also able to provide more than one semantic explanation to a community. We evaluated the new method on artificial benchmarks and analyzed the semantic interpretability by a case study. We compared the new method with eight state-of-the-art methods on ten real-world networks, showing its superior performance over the existing methods.
AB - The objective of discovering network communities, an essential step in complex systems analysis, is two-fold: identification of functional modules and their semantics at the same time. However, most existing community-finding methods have focused on finding communities using network topologies, and the problem of extracting module semantics has not been well studied and node contents, which often contain semantic information of nodes and networks, have not been fully utilized. We considered the problem of identifying network communities and module semantics at the same time. We introduced a novel generative model with two closely correlated parts, one for communities and the other for semantics. We developed a co-learning strategy to jointly train the two parts of the model by combining a nested EM algorithm and belief propagation. By extracting the latent correlation between the two parts, our new method is not only robust for finding communities and semantics, but also able to provide more than one semantic explanation to a community. We evaluated the new method on artificial benchmarks and analyzed the semantic interpretability by a case study. We compared the new method with eight state-of-the-art methods on ten real-world networks, showing its superior performance over the existing methods.
UR - http://www.scopus.com/inward/record.url?scp=85030481812&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85030481812
SP - 116
EP - 124
T2 - 31st AAAI Conference on Artificial Intelligence, AAAI 2017
Y2 - 4 February 2017 through 10 February 2017
ER -