TY - JOUR
T1 - IVT-seq reveals extreme bias in RNA sequencing
AU - Lahens, Nicholas F.
AU - Kavakli, Ibrahim Halil
AU - Zhang, Ray
AU - Hayer, Katharina
AU - Black, Michael B.
AU - Dueck, Hannah
AU - Pizarro, Angel
AU - Kim, Junhyong
AU - Irizarry, Rafael
AU - Thomas, Russell S.
AU - Grant, Gregory R.
AU - Hogenesch, John B.
N1 - Funding Information:
We would like to thank the Penn Genome Frontiers Institute sequencing core, the Institute for Diabetes, Obesity and Metabolism, the DRC grant (P30DK19525), and the services of the Functional Genomics Core for performing the Illumina sequencing. JBH is supported by the National Institutes of Health (NIH) grants 2-R01-NS054794-06 and 5-R01-HL097800-04 and by DARPA [12-DARPA-1068] (to John Harer, Duke University). GRG is supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, NIH, through Grant UL1TR000003. This project is funded, in part, by the Penn Genome Frontiers Institute under an HRFF grant with the Pennsylvania Department of Health, which disclaims responsibility for any analyses, interpretations, or conclusions. This project is also supported in part by the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Publisher Copyright:
© 2014 Lahens et al.
PY - 2014/6/30
Y1 - 2014/6/30
N2 - Background: RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events, both known and novel. However, given its recent development and the proliferation of library construction methods, understanding the bias it introduces is incomplete but critical to realizing its value. Results: We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive, each base in each transcript should be equivalently represented. However, with common RNA-seq applications and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically unpredictable sequencing coverage between samples, confounding accurate determination of their expression. We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the most significant variability in coverage, and several sequence determinants also strongly influence representation. Conclusions: These results show the utility of IVT-seq for promoting better understanding of bias introduced by RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend caution when interpreting RNA-seq results.
AB - Background: RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events, both known and novel. However, given its recent development and the proliferation of library construction methods, understanding the bias it introduces is incomplete but critical to realizing its value. Results: We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive, each base in each transcript should be equivalently represented. However, with common RNA-seq applications and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically unpredictable sequencing coverage between samples, confounding accurate determination of their expression. We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the most significant variability in coverage, and several sequence determinants also strongly influence representation. Conclusions: These results show the utility of IVT-seq for promoting better understanding of bias introduced by RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend caution when interpreting RNA-seq results.
UR - http://www.scopus.com/inward/record.url?scp=84911861819&partnerID=8YFLogxK
U2 - 10.1186/gb-2014-15-6-r86
DO - 10.1186/gb-2014-15-6-r86
M3 - Article
C2 - 24981968
AN - SCOPUS:84911861819
SN - 1474-7596
VL - 15
JO - Genome Biology
JF - Genome Biology
IS - 6
M1 - R86
ER -