Isotopic fractionation of Cu in plants

Charlotte Weinstein, Frédéric Moynier, Kun Wang, Randal Paniello, Julien Foriel, Jeff Catalano, Sylvain Pichat

Research output: Contribution to journalArticlepeer-review

111 Scopus citations

Abstract

Knowledge of the copper cycle in the plant-soil-water system is needed in order to better constrain proper plant micronutrient nutrition, control pollution, and determine sustainable soil management practices. Here, we report the Cu isotopic compositions of different components (seeds, germinated seeds, leaves, and stems) of the dicot, lentil (Lens culinaris), and of two monocots, Virginia wild rye (Elymus virginicus) and hairy-leaved sedge (Carex hirsutella). According to our data, the isotopic compositions of these plants are systematically enriched in the lighter isotope of Cu (63Cu) in comparison to the soil in which they grow. Furthermore, different components within the plants themselves are isotopically fractionated. The shoots (stems, leaves and seeds) are systematically lighter than the germinated seeds of the plants and the Cu isotopic compositions of individual leaves correlate with their heights on the plant. These results are similar to what has been observed for Zn isotopes, which are assumed to be transported through plants by means of diffusion and kinetic fractionation across cell membranes. Because of this similarity, we suggest that the same transport mechanisms are also responsible for the observed isotopic fractionation of Cu. As a side-note, the Cu isotopic variations measured in plants are similar in magnitude to the differences previously measured in various soils, and therefore should not be neglected while interpreting the isotopic composition of soils.

Original languageEnglish
Pages (from-to)266-271
Number of pages6
JournalChemical Geology
Volume286
Issue number3-4
DOIs
StatePublished - Jul 22 2011

Keywords

  • Copper cycle
  • Cu
  • Isotopes
  • Plants
  • Soils

Fingerprint

Dive into the research topics of 'Isotopic fractionation of Cu in plants'. Together they form a unique fingerprint.

Cite this