TY - JOUR
T1 - Islet activating protein inhibits kinin-stimulated inositol phosphate production, calcium mobilization, and prostaglandin E2 synthesis in renal papillary collecting tubule cells independent of cyclic AMP
AU - Shayman, J. A.
AU - Morrissey, J. J.
AU - Morrison, A. R.
PY - 1987
Y1 - 1987
N2 - The effects of islet-activating protein (pertussis toxin) on bradykinin-mediated inositol trisphosphate labeling, prostaglandin E2 production, and calcium mobilization in rabbit renal papillary collecting tubule cells were assessed. Islet-activating protein induced time and concentration-dependent decreases in bradykinin-stimulated prostaglandin E2 production. Islet-activating protein induced increases in basal cyclic AMP levels but not in arginine vasopressin-stimulated cAMP. This effect could be inhibited by prior incubation with 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase. Although cAMP and cAMP analogues were able to inhibit both basal and bradykinin-stimulated prostaglandin E2 formation, the inhibitory effects of islet-activating protein on prostaglandin E2 formation and inositol trisphosphate labeling were observed in the presence of dideoxyadenosine. Moreover, islet-activating protein lowered both the basal and kinin-stimulated cytosolic calcium concentration as assessed by Quin 2 fluorescence. Finally, incubation of a membrane fraction of papillary cells with islet-activating protein resulted in the ADP-ribosylation of a 39/41-kDa doublet. These data support the role of a guanine nucleotide regulatory protein in bradykinin-mediated signal transduction in rabbit papillary collecting tubule cells.
AB - The effects of islet-activating protein (pertussis toxin) on bradykinin-mediated inositol trisphosphate labeling, prostaglandin E2 production, and calcium mobilization in rabbit renal papillary collecting tubule cells were assessed. Islet-activating protein induced time and concentration-dependent decreases in bradykinin-stimulated prostaglandin E2 production. Islet-activating protein induced increases in basal cyclic AMP levels but not in arginine vasopressin-stimulated cAMP. This effect could be inhibited by prior incubation with 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase. Although cAMP and cAMP analogues were able to inhibit both basal and bradykinin-stimulated prostaglandin E2 formation, the inhibitory effects of islet-activating protein on prostaglandin E2 formation and inositol trisphosphate labeling were observed in the presence of dideoxyadenosine. Moreover, islet-activating protein lowered both the basal and kinin-stimulated cytosolic calcium concentration as assessed by Quin 2 fluorescence. Finally, incubation of a membrane fraction of papillary cells with islet-activating protein resulted in the ADP-ribosylation of a 39/41-kDa doublet. These data support the role of a guanine nucleotide regulatory protein in bradykinin-mediated signal transduction in rabbit papillary collecting tubule cells.
UR - http://www.scopus.com/inward/record.url?scp=0023567570&partnerID=8YFLogxK
M3 - Article
C2 - 2824514
AN - SCOPUS:0023567570
SN - 0021-9258
VL - 262
SP - 17083
EP - 17087
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 35
ER -