TY - JOUR
T1 - Is comprehensiveness critical? Comparing short and long format cognitive assessments in preclinical Alzheimer disease
AU - Hassenstab, Jason
AU - Nicosia, Jessica
AU - LaRose, Megan
AU - Aschenbrenner, Andrew J.
AU - Gordon, Brian A.
AU - Benzinger, Tammie L.S.
AU - Xiong, Chengjie
AU - Morris, John C.
N1 - Funding Information:
Study 2: This work was supported by NIA Grants P01AG03991, P01AG026276, K01AG053474, and P30AG066444.
Funding Information:
The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P30 AG066444 (PI John C. Morris, MD), and P50 AG047270 (PI Stephen Strittmatter, MD, PhD).
Funding Information:
The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P30 AG066444 (PI John C. Morris, MD), and P50 AG047270 (PI Stephen Strittmatter, MD, PhD).
Funding Information:
The NACC UDS 3 is a standardized evaluation consisting of clinical and cognitive measures administered to participants enrolled in ongoing studies of aging and dementia at ~ 30 centers funded by the National Institute on Aging (NIA) Alzheimers Disease Research Center (ADRC) program. Written informed consent is obtained at the individual ADRCs and approved by individual Institutional Review Boards (IRBs). We included participant visits submitted to NACC by the ADRCs from March of 2015 to August 2019. This time period reflects when the MoCA and other UDS 3 measures were introduced into the ADRCs and submitted to NACC. Because we were interested in determining the utility of the MoCA as compared to the long-form UDS 3 cognitive battery in predicting disease progression from cognitive normality to onset of symptomatic disease, we included only participants who were cognitively normal at their first visit when MoCA was introduced into the ADRCs. Participants were required to have a Clinical Dementia Rating™ (CDR™) [] of 0 at their first visit and have at least one follow-up visit.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Comprehensive testing of cognitive functioning is standard practice in studies of Alzheimer disease (AD). Short-form tests like the Montreal Cognitive Assessment (MoCA) use a “sampling” of measures, administering key items in a shortened format to efficiently assess cognition while reducing time requirements, participant burden, and administrative costs. We compared the MoCA to a commonly used long-form cognitive battery in predicting AD symptom onset and sensitivity to AD neuroimaging biomarkers. Methods: Survival, area under the receiver operating characteristic (ROC) curve (AUC), and multiple regression analyses compared the MoCA and long-form measures in predicting time to symptom onset in cognitively normal older adults (n = 6230) from the National Alzheimer’s Coordinating Center (NACC) cohort who had, on average, 2.3 ± 1.2 annual assessments. Multiple regression models in a separate sample (n = 416) from the Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) compared the sensitivity of the MoCA and long-form measures to neuroimaging biomarkers including amyloid PET, tau PET, and cortical thickness. Results: Hazard ratios suggested that both the MoCA and the long-form measures are similarly and modestly efficacious in predicting symptomatic conversion, although model comparison analyses indicated that the long-form measures slightly outperformed the MoCA (HRs > 1.57). AUC analyses indicated no difference between the measures in predicting conversion (DeLong’s test, Z = 1.48, p = 0.13). Sensitivity to AD neuroimaging biomarkers was similar for the two measures though there were only modest associations with tau PET (rs = − 0.13, ps < 0.02) and cortical thickness in cognitively normal participants (rs = 0.15–0.16, ps < 0.007). Conclusions: Both test formats showed weak associations with symptom onset, AUC analyses indicated low diagnostic accuracy, and biomarker correlations were modest in cognitively normal participants. Alternative assessment approaches are needed to improve how clinicians and researchers monitor cognitive changes and disease progression prior to symptom onset.
AB - Background: Comprehensive testing of cognitive functioning is standard practice in studies of Alzheimer disease (AD). Short-form tests like the Montreal Cognitive Assessment (MoCA) use a “sampling” of measures, administering key items in a shortened format to efficiently assess cognition while reducing time requirements, participant burden, and administrative costs. We compared the MoCA to a commonly used long-form cognitive battery in predicting AD symptom onset and sensitivity to AD neuroimaging biomarkers. Methods: Survival, area under the receiver operating characteristic (ROC) curve (AUC), and multiple regression analyses compared the MoCA and long-form measures in predicting time to symptom onset in cognitively normal older adults (n = 6230) from the National Alzheimer’s Coordinating Center (NACC) cohort who had, on average, 2.3 ± 1.2 annual assessments. Multiple regression models in a separate sample (n = 416) from the Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) compared the sensitivity of the MoCA and long-form measures to neuroimaging biomarkers including amyloid PET, tau PET, and cortical thickness. Results: Hazard ratios suggested that both the MoCA and the long-form measures are similarly and modestly efficacious in predicting symptomatic conversion, although model comparison analyses indicated that the long-form measures slightly outperformed the MoCA (HRs > 1.57). AUC analyses indicated no difference between the measures in predicting conversion (DeLong’s test, Z = 1.48, p = 0.13). Sensitivity to AD neuroimaging biomarkers was similar for the two measures though there were only modest associations with tau PET (rs = − 0.13, ps < 0.02) and cortical thickness in cognitively normal participants (rs = 0.15–0.16, ps < 0.007). Conclusions: Both test formats showed weak associations with symptom onset, AUC analyses indicated low diagnostic accuracy, and biomarker correlations were modest in cognitively normal participants. Alternative assessment approaches are needed to improve how clinicians and researchers monitor cognitive changes and disease progression prior to symptom onset.
KW - Alzheimer disease
KW - Cognitive assessment
KW - Cognitive decline
UR - http://www.scopus.com/inward/record.url?scp=85114777716&partnerID=8YFLogxK
U2 - 10.1186/s13195-021-00894-5
DO - 10.1186/s13195-021-00894-5
M3 - Article
C2 - 34517889
AN - SCOPUS:85114777716
SN - 1758-9193
VL - 13
JO - Alzheimer's Research and Therapy
JF - Alzheimer's Research and Therapy
IS - 1
M1 - 153
ER -