Investigating the safety factor at an invertebrate neuromuscular junction

Scott B. Marrus, Aaron DiAntonio

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Fidelity of synaptic transmission is essential at the neuromuscular junction (NMJ). To ensure that transmission does not fail, vertebrate motoneurons often release more neurotransmitter than is required for muscle contraction. This safety factor allows some loss of synaptic function without failure of muscle contraction. It is not known whether a similar mechanism operates at the invertebrate neuromuscular junction. In our study of the Drosophila NMJ, we find that glutamate receptor mutants can exhibit a substantial decrease in synaptic function while maintaining muscle contraction. The persistence of neuromuscular function in these mutants is not explained by synaptic facilitation, temporal summation of high frequency stimuli, or a hyperpolarizing shift in the activation range of muscle calcium channels. Instead, the attenuated synaptic response is sufficient to drive muscle contraction. Quantitative analysis of the decrease in synaptic transmission in these mutants implies that at the wild-type NMJ there is an approximately five- to ninefold excess in released transmitter. Hence, the presence of a synaptic safety factor is a conserved feature of neuromuscular organization in both invertebrates and vertebrates.

Original languageEnglish
Pages (from-to)62-69
Number of pages8
JournalJournal of Neurobiology
Volume63
Issue number1
DOIs
StatePublished - Apr 1 2005

Keywords

  • Drosophila
  • Invertebrate
  • Neuromuscular junction
  • Safety factor

Fingerprint Dive into the research topics of 'Investigating the safety factor at an invertebrate neuromuscular junction'. Together they form a unique fingerprint.

  • Cite this