TY - JOUR
T1 - Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium
AU - Biswas, Sandeep
AU - Niedzwiedzki, Dariusz M.
AU - Pakrasi, Himadri B.
N1 - Publisher Copyright:
© 2022
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green‑sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.
AB - Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green‑sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.
KW - Bioengineering
KW - CP43
KW - High-light tolerance
KW - Non-photochemical quenching (NPQ)
KW - Photosystem II
KW - Spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85131726980&partnerID=8YFLogxK
U2 - 10.1016/j.bbabio.2022.148580
DO - 10.1016/j.bbabio.2022.148580
M3 - Article
C2 - 35654167
AN - SCOPUS:85131726980
SN - 0005-2728
VL - 1863
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 7
M1 - 148580
ER -