TY - JOUR
T1 - Intrinsic Mechanisms in the Gating of Resurgent Na+ Currents
AU - Ransdell, Joey
AU - Moreno, Jonathan
AU - Bhagavan, Druv
AU - Silva, Jonathan R.
AU - Nerbonne, Jeanne M.
N1 - Funding Information:
JDM was supported by a NIH institutional training grant (T32 HL007081) and a grant from the Foundation for
Funding Information:
The authors thank Mr. Richard Wilson for expert technical assistance. The financial support provided by the NIH (R01 NS065761 to JMN, R01 HL136553 to JRS, and F32 NS090765 to JLR) is also gratefully acknowledged; JDM was supported by a NIH institutional training grant (T32 HL007081) and a grant from the Foundation for Barnes Jewish Hospital. The authors declare no competing financial interests.
Funding Information:
The authors thank Mr. Richard Wilson for expert technical assistance. The financial support provided by the NIH
Publisher Copyright:
© 2022, eLife Sciences Publications Ltd. All rights reserved.
PY - 2022/1
Y1 - 2022/1
N2 - The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast-and slow-inactivated states, such as the accessory Navβ4 channel subunit, can modulate the amplitude of INaR.
AB - The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast-and slow-inactivated states, such as the accessory Navβ4 channel subunit, can modulate the amplitude of INaR.
KW - I
KW - Markov modelling
KW - Mouse cerebellar Purkinje neurons
KW - Nav channel gating
UR - http://www.scopus.com/inward/record.url?scp=85123704400&partnerID=8YFLogxK
U2 - 10.7554/eLife.70173
DO - 10.7554/eLife.70173
M3 - Article
C2 - 35076394
AN - SCOPUS:85123704400
SN - 2050-084X
VL - 11
JO - eLife
JF - eLife
M1 - e70173
ER -