Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii

Jessica M. Wilson, Christopher K. Thompson, Laura C. Miller, Charles J. Heckman

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold “control” unit was used as an indicator of common drive to the higher-threshold “test” unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (∆F). We found that ∆F values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ∆F variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.

Original languageEnglish
Pages (from-to)3692-3699
Number of pages8
JournalJournal of neurophysiology
Volume113
Issue number10
DOIs
StatePublished - Jun 1 2015

Keywords

  • Elbow extensors
  • Elbow flexors
  • Intrinsic excitability
  • Motoneurons
  • Neuromodulation

Fingerprint

Dive into the research topics of 'Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii'. Together they form a unique fingerprint.

Cite this