TY - JOUR
T1 - Intrinsic and extrinsic pathway signaling during neuronal apoptosis
T2 - Lessons from the analysis of mutant mice
AU - Putcha, Girish V.
AU - Harris, Charles A.
AU - Moulder, Krista L.
AU - Easton, Rachael M.
AU - Thompson, Craig B.
AU - Johnson, Eugene M.
PY - 2002/4/29
Y1 - 2002/4/29
N2 - Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis-dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members. All coexpressed proapoptotic proteins did not, however, exhibit functional redundancy or compensatory expression, at least in the Bax-/-, Bak-/-, Bim-/-, Bid-/-, and Bad-/- neurons examined. Although the subcellular distribution or posttranslational modification of certain BCL-2 proteins changed with TFD, neither transcriptional nor posttranslational mechanisms regulated the expression or subcellular localization of BID, BAD, or BAK in this paradigm. Despite modest induction of Fas and FasL expression, Fas-mediated signaling did not contribute to TFD-induced apoptosis in sympathetic neurons. Similar findings were obtained with K+ withdrawal-induced apoptosis in cerebellar granule neurons, a model for activity-dependent neuronal survival in the CNS. Thus, expression alone does not guarantee functional redundancy (or compensation) among BCL-2 family members, and, at least in some cells, extrinsic pathway signaling and certain BH3-only proteins (i.e., BID and BAD) do not contribute to BAX-dependent cyt c release or apoptosis caused by TFD.
AB - Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis-dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members. All coexpressed proapoptotic proteins did not, however, exhibit functional redundancy or compensatory expression, at least in the Bax-/-, Bak-/-, Bim-/-, Bid-/-, and Bad-/- neurons examined. Although the subcellular distribution or posttranslational modification of certain BCL-2 proteins changed with TFD, neither transcriptional nor posttranslational mechanisms regulated the expression or subcellular localization of BID, BAD, or BAK in this paradigm. Despite modest induction of Fas and FasL expression, Fas-mediated signaling did not contribute to TFD-induced apoptosis in sympathetic neurons. Similar findings were obtained with K+ withdrawal-induced apoptosis in cerebellar granule neurons, a model for activity-dependent neuronal survival in the CNS. Thus, expression alone does not guarantee functional redundancy (or compensation) among BCL-2 family members, and, at least in some cells, extrinsic pathway signaling and certain BH3-only proteins (i.e., BID and BAD) do not contribute to BAX-dependent cyt c release or apoptosis caused by TFD.
KW - Bad
KW - Bax
KW - Bid
KW - Caspase
KW - Fas
UR - http://www.scopus.com/inward/record.url?scp=0037193473&partnerID=8YFLogxK
U2 - 10.1083/jcb.200110108
DO - 10.1083/jcb.200110108
M3 - Article
C2 - 11980919
AN - SCOPUS:0037193473
SN - 0021-9525
VL - 157
SP - 441
EP - 453
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 3
ER -