Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Most plant species, including most crops, perform poorly in salt-affected soils because high sodium levels are cytotoxic and can disrupt the uptake of water and important nutrients. Halophytes are species that have evolved adaptations to overcome these challenges and may be a useful source of knowledge for salt tolerance mechanisms and genes that may be transferable to crop species. The salt content of saline habitats can vary dramatically by location, providing ample opportunity for different populations of halophytic species to adapt to their local salt concentrations; however, the extent of this variation, and the physiology and polymorphisms that drive it, remain poorly understood. Differential accumulation of inorganic elements between genotypes or populations may play an important role in local salinity adaptation. To test this, we investigated the relationships between population structure, tissue ion concentrations, and salt tolerance in 17 “fine-textured” genotypes of the halophytic turfgrass seashore paspalum (Paspalum vaginatum Swartz). A high-throughput ionomics pipeline was used to quantify the shoot concentration of 18 inorganic elements across three salinity treatments. We found a significant relationship between population structure and ion accumulation, with strong correlations between principal components derived from genetic and ionomic data. Additionally, genotypes with higher salt tolerance accumulated more K and Fe and less Ca than less tolerant genotypes. Together these results indicate that differences in ion accumulation between P. vaginatum populations may reflect locally adapted salt stress responses.

Original languageEnglish
Article numberjkab275
JournalG3: Genes, Genomes, Genetics
Issue number10
StatePublished - Oct 2021


  • Halophyte
  • Ionomics
  • Paspalum vaginatum
  • Population structure
  • Salt tolerance


Dive into the research topics of 'Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum'. Together they form a unique fingerprint.

Cite this