TY - JOUR
T1 - Intra-hospital microbiome variability is driven by accessibility and clinical activities
AU - Chibwe, Kaseba
AU - Sundararaju, Sathyavathi
AU - Zhang, Lin
AU - Tsui, Clement
AU - Tang, Patrick
AU - Ling, Fangqiong
N1 - Publisher Copyright:
Copyright © 2024 Chibwe et al.
PY - 2024/8
Y1 - 2024/8
N2 - The hospital environmental microbiome, which can affect patients' and healthcare workers' health, is highly variable and the drivers of this variability are not well understood. In this study, we collected 37 surface samples from the neonatal intensive care unit (NICU) in an inpatient hospital before and after the operation began. Additionally, healthcare workers collected 160 surface samples from five additional areas of the hospital. All samples were analyzed using 16S rRNA gene amplicon sequencing, and the samples collected by healthcare workers were cultured. The NICU samples exhibited similar alpha and beta diversities before and after opening, which indicated that the microbiome there was stable over time. Conversely, the diversities of samples taken after opening varied widely by area. Principal coordinate analysis (PCoA) showed the samples clustered into two distinct groups: high alpha diversity [the pediatric intensive care unit (PICU), pathology lab, and microbiology lab] and low alpha diversity [the NICU, pediatric surgery ward, and infection prevention and control (IPAC) office]. Least absolute shrinkage and selection operator (LASSO) classification models identified 156 informative amplicon sequence variants (ASVs) for predicting the sample's area of origin. The testing accuracy ranged from 86.37% to 100%, which outperformed linear and radial support vector machine (SVM) and random forest models. ASVs of genera that contain emerging pathogens were identified in these models. Culture experiments had identified viable species among the samples, including potential antibiotic-resistant bacteria. Though area type differences were not noted in the culture data, the prevalences and relative abundances of genera detected positively correlated with 16S sequencing data. This study brings to light the microbial community temporal and spatial variation within the hospital and the importance of pathogenic and commensal bacteria to understanding dispersal patterns for infection control.
AB - The hospital environmental microbiome, which can affect patients' and healthcare workers' health, is highly variable and the drivers of this variability are not well understood. In this study, we collected 37 surface samples from the neonatal intensive care unit (NICU) in an inpatient hospital before and after the operation began. Additionally, healthcare workers collected 160 surface samples from five additional areas of the hospital. All samples were analyzed using 16S rRNA gene amplicon sequencing, and the samples collected by healthcare workers were cultured. The NICU samples exhibited similar alpha and beta diversities before and after opening, which indicated that the microbiome there was stable over time. Conversely, the diversities of samples taken after opening varied widely by area. Principal coordinate analysis (PCoA) showed the samples clustered into two distinct groups: high alpha diversity [the pediatric intensive care unit (PICU), pathology lab, and microbiology lab] and low alpha diversity [the NICU, pediatric surgery ward, and infection prevention and control (IPAC) office]. Least absolute shrinkage and selection operator (LASSO) classification models identified 156 informative amplicon sequence variants (ASVs) for predicting the sample's area of origin. The testing accuracy ranged from 86.37% to 100%, which outperformed linear and radial support vector machine (SVM) and random forest models. ASVs of genera that contain emerging pathogens were identified in these models. Culture experiments had identified viable species among the samples, including potential antibiotic-resistant bacteria. Though area type differences were not noted in the culture data, the prevalences and relative abundances of genera detected positively correlated with 16S sequencing data. This study brings to light the microbial community temporal and spatial variation within the hospital and the importance of pathogenic and commensal bacteria to understanding dispersal patterns for infection control.
KW - 16S RNA
KW - LASSO modeling
KW - NICU
KW - blood agar culture
KW - community-engaged science
KW - hospital environment
KW - microbiome
KW - statistics
UR - http://www.scopus.com/inward/record.url?scp=85201030053&partnerID=8YFLogxK
U2 - 10.1128/spectrum.00296-24
DO - 10.1128/spectrum.00296-24
M3 - Article
C2 - 38940596
AN - SCOPUS:85201030053
SN - 2165-0497
VL - 12
JO - Microbiology spectrum
JF - Microbiology spectrum
IS - 8
ER -