Intermittent vagal nerve stimulation alters the electrophysiological properties of atrium in the myocardial infarction rat model

Xueyi Xie, Steven W. Lee, Christopher Johnson, Joseph Ippolito, Bruce H. Kenknight, Elena G. Tolkacheva

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Intermittent vagal nerve stimulation (VNS) has emerged as a potential therapy to treat cardiovascular diseases by delivering electrical stimulation to the vagus nerves. The purpose of this study was to investigate the electrophysiological changes in the atrium resulting from long-term intermittent VNS therapy in the chronic myocardial infarction (MI) rat model. MI was induced via left anterior descending coronary artery (LAD) ligation in male Sprague-Dawley rats, randomized into two groups: MI (implanted with nonfunctional VNS stimulators) and MI-VNS (implanted with functional VNS stimulators and received chronic intermittent VNS treatment) groups. Further, a sham group was used as control in which MI was not performed and received nonfunctional VNS stimulators. At 12 weeks, optical mapping of right atrium (RA) of sinus rhythm was performed. Our results demonstrated that chronic MI changed the electrical properties of the atrium action potentials and resulted in reduced action potential duration at 50% (APD50) and 80% (APD80) repolarization. Chronic right cervical VNS restored the APD back to healthy heart APD values. Additionally, APD heterogeneity index increased as a result of the chronic MI. Chronic VNS was not found to alter this increase. By calculating PR intervals from weekly ECG recordings of anaesthetized rats, we demonstrated that chronic MI and intermittent VNS did not affect the AV conduction time from the atria to the ventricles. From our study, we conclude the MI decreased the APD and increased APD spatial dispersion. VNS increased the APD back to healthy normal values but did change the APD spatial dispersion and the electrical conduction in the RA.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1575-1578
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period08/26/1408/30/14

Fingerprint

Dive into the research topics of 'Intermittent vagal nerve stimulation alters the electrophysiological properties of atrium in the myocardial infarction rat model'. Together they form a unique fingerprint.

Cite this