Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK

Silvia Costantini, Lisa Woodbine, Lucia Andreoli, Penny A. Jeggo, Alessandro Vindigni

Research output: Contribution to journalArticlepeer-review

105 Scopus citations


DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.

Original languageEnglish
Pages (from-to)712-722
Number of pages11
JournalDNA Repair
Issue number6
StatePublished - Jun 1 2007


  • BRCA-1 C-terminal (BRCT)
  • DNA double-strand breaks repair
  • DNA ligase IV
  • DNA non-homologous end-joining (NHEJ)
  • DNA-PK
  • Ku heterodimer


Dive into the research topics of 'Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK'. Together they form a unique fingerprint.

Cite this