Integrative genome analysis reveals an oncomir/ oncogene cluster regulating glioblastoma survivorship

Hyunsoo Kim, Wei Huang, Xiuli Jiang, Brenton Pennicooke, Peter J. Park, Mark D. Johnson

Research output: Contribution to journalArticlepeer-review

212 Scopus citations

Abstract

Using a multidimensional genomic data set on glioblastoma from The Cancer Genome Atlas, we identified hsa-miR-26a as a cooperating component of a frequently occurring amplicon that also contains CDK4 and CENTG1, two oncogenes that regulate the RB1 and PI3 kinase/AKT pathways, respectively. By integrating DNA copy number, mRNA, microRNA, and DNA methylation data, we identified functionally relevant targets of miR-26a in glioblastoma, including PTEN, RB1, and MAP3K2/MEKK2. We demonstrate that miR-26a alone can transform cells and it promotes glioblastoma cell growth in vitro and in the mouse brain by decreasing PTEN, RB1, and MAP3K2/MEKK2 protein expression, thereby increasing AKT activation, promoting proliferation, and decreasing c-JUN N-terminal kinase-dependent apoptosis. Overexpression of miR-26a in PTEN-competent and PTEN-deficient glioblastoma cells promoted tumor growth in vivo, and it further increased growth in cells overexpressing CDK4 or CENTG1. Importantly, glioblastoma patients harboring this amplification displayed markedly decreased survival. Thus, hsa-miR-26a, CDK4, and CENTG1 comprise a functionally integrated oncomir/oncogene DNA cluster that promotes aggressiveness in human cancers by cooperatively targeting the RB1, PI3K/AKT, and JNK pathways.

Original languageEnglish
Pages (from-to)2183-2188
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume107
Issue number5
DOIs
StatePublished - Feb 2 2010

Keywords

  • CDK4
  • MicroRNA
  • PTEN
  • RB1
  • miR-26a

Fingerprint

Dive into the research topics of 'Integrative genome analysis reveals an oncomir/ oncogene cluster regulating glioblastoma survivorship'. Together they form a unique fingerprint.

Cite this