Neuroplasticity and evolutionary biology have been prominent fields of study for well over a century. However, they have advanced largely independently, without consideration of the benefits of integration. We propose a new framework by which researchers can begin to examine the evolutionary causes and consequences of neuroplasticity. Neuroplasticity can be defined as changes to the structure, function or connections of the nervous system in response to individual experience. Evolution can alter levels of neuroplasticity if there is variation in neuroplasticity traits within and between populations. Neuroplasticity may be favored or disfavored by natural selection depending on the variability of the environment and the costs of neuroplasticity. Additionally, neuroplasticity may affect rates of genetic evolution in many ways: for example, decreasing rates of evolution by buffering against selection or increasing them via the Baldwin effect, by increasing genetic variation or by incorporating evolved peripheral changes to the nervous system. These mechanisms can be tested using comparative and experimental approaches and by examining patterns and consequences of variation in neuroplasticity among species, populations and individuals.

Original languageEnglish
Pages (from-to)R288-R293
JournalCurrent Biology
Issue number8
StatePublished - Apr 24 2023


Dive into the research topics of 'Integrating neuroplasticity and evolution'. Together they form a unique fingerprint.

Cite this