TY - JOUR
T1 - Innate immunity in the adult mammalian heart
T2 - for whom the cell tolls.
AU - Mann, Douglas L.
AU - Topkara, Veli K.
AU - Evans, Sarah
AU - Barger, Philip M.
PY - 2010
Y1 - 2010
N2 - Recent studies suggest that the heart possesses an intrinsic system that is intended to delimit tissue injury, as well as orchestrate homoeostatic responses within the heart. The extant literature suggests that this intrinsic stress response is mediated, at least in part, by a family of pattern recognition receptors that belong to the innate immune system, including CD14, the soluble pattern recognition receptor for lipopolysaccharide, and Toll like receptors-2, 3, 4, and 6. Although this intrinsic stress response system provides a short-term adaptive response to tissue injury, the beneficial effects of this phylogenetically ancient system may be lost if myocardial expression of these molecules either becomes sustained and/or excessive, in which case the salutary effects of activation of these pathways may be contravened by the known deleterious effects of inflammatory signaling. Herein we present new information with regard to activation of innate immune gene expression in the failing human heart. Taken together, these new observations provide provisional evidence that the innate immune system is activated in human heart failure, raising the interesting possibility that this pathway may represent a target for the development of novel heart failure therapeutics.
AB - Recent studies suggest that the heart possesses an intrinsic system that is intended to delimit tissue injury, as well as orchestrate homoeostatic responses within the heart. The extant literature suggests that this intrinsic stress response is mediated, at least in part, by a family of pattern recognition receptors that belong to the innate immune system, including CD14, the soluble pattern recognition receptor for lipopolysaccharide, and Toll like receptors-2, 3, 4, and 6. Although this intrinsic stress response system provides a short-term adaptive response to tissue injury, the beneficial effects of this phylogenetically ancient system may be lost if myocardial expression of these molecules either becomes sustained and/or excessive, in which case the salutary effects of activation of these pathways may be contravened by the known deleterious effects of inflammatory signaling. Herein we present new information with regard to activation of innate immune gene expression in the failing human heart. Taken together, these new observations provide provisional evidence that the innate immune system is activated in human heart failure, raising the interesting possibility that this pathway may represent a target for the development of novel heart failure therapeutics.
UR - http://www.scopus.com/inward/record.url?scp=79952021934&partnerID=8YFLogxK
M3 - Review article
C2 - 20697548
AN - SCOPUS:79952021934
SN - 0065-7778
VL - 121
SP - 34-50; discussion 50-51
JO - Transactions of the American Clinical and Climatological Association
JF - Transactions of the American Clinical and Climatological Association
ER -